
Journal of Experimental Psychology:
Learning, Memory, and Cognition
1996, Vol. 22, No. 3, 576-598

Copyright 1996 by the American Psychological Association, Inc.
0278-7393/96/13.00

How People Learn to Skip Steps

Stephen B. Blessing and John R. Anderson
Carnegie Mellon University

Novices often explicitly apply in a domain each necessary operator while solving a problem,
whereas experts often skip steps, and as a result, the solution procedures they use are often
organized differently from those of novices. Using an algebra analog, the authors examined this
change in process. In 2 experiments, people learned the rules of the task and then solved many
problems. Their solution procedures were monitored, and concurrent verbal protocols were taken.
When participants started overtly skipping steps, they appeared to be performing them mentally
but later started to use new transformations, thereby covertly skipping steps as well. An adaptive
control of thought—rational model (J. R. Anderson, 1993) of problem-solver behavior within this
task was developed and evaluated with respect to existing theories of skill acquisition.

As people solve the same type of problem again and again,
not only do they get faster at doing that type of problem, but
very often the process they use to solve the problems changes
as well, often resulting in skipped steps (Koedinger & Ander-
son, 1990). This reorganization and skipping of steps allow
people to solve problems more quickly, efficiently, and easily.
One might expect this change in process to result in perfor-
mance discontinuities in a person's acquisition of a skill
because the person is undergoing what may be a radical
reorganization of how that skill is performed. However, Newell
and Rosenbloom (1981) showed that a variety of skills are
acquired at a steady rate, one that follows a power function (an
equation of the form y = a + bxc, where a, b, and c are
constants). In this article we examine the step-skipping phenom-
enon and its apparent relationship to the power law of
learning.

Step skipping is often thought of as a compositional process,
in which a person who used to take two or more steps to do a
task now takes only one. Intuitively then, if a person does a
problem in fewer steps in completing a task, he or she should
take less time in performing that task. Research by Charness
and Campbell (1988) showed that compositional processes
account for about 70% of the speedup associated with acquir-
ing a new skill, with the rest of the speedup accounted for by
becoming faster at the operations themselves. Work done by
Frensch and Geary (1993; Frensch, 1991) also indicated the
importance of compositional processes, as distinct from a
general speedup in performance, in learning a task. It is
evident from this research that composition is an important
component to acquiring a skill.

Stephen B. Blessing and John R. Anderson, Department of Psychol-
ogy, Carnegie Mellon University.

The work presented in this article was supported by National
Science Foundation Grant 91-08529 and Office of Naval Research
Augmentation Award for Science and Engineering Research Training
Grant N000149311010. We thank Richard Carlson, Jill Larkin, Marsha
Lovett, and Herbert Simon for their comments on drafts of this article.

Correspondence concerning this article should be addressed to
Stephen B. Blessing, Department of Psychology, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213-3890. Electronic mail may
be sent via Internet to blessing+@cmu.edu.

Given the importance of these compositional processes, a
number of skill acquisition theories attempt to account for the
change in process, including step skipping, that occurs when a
person becomes expert in a particular domain. The adaptive
control of thought—rational theory (ACT-R; Anderson, 1993)
predicts that any new procedural skills arise by analogy to
examples. Newell and Rosenbloom (1981; Rosenbloom &
Newell, 1986) proposed that people acquire skill by a chunking
process, in which responses are acquired in larger and larger
chunks (patterns). Logan's (1988,1990) instance theory states
that skilled performance is generally characterized as the
retrieval of a specific memory, and not the use of a procedure.
As can be seen even from just these short descriptions, the
proposed mechanisms in these theories differ greatly. These
theories are discussed in more detail shortly, but first we want
to introduce the phenomenon that we address in this article.

When asked to solve the equation —x — A = B for x, some
people who are facile in algebra will immediately write that x =
— B — A. However, people who have just learned how to solve
simple linear equations may not be able to go immediately
from the initial problem statement to the solution. Rather,
they may have to perform three steps, which may correspond
to adding A to both sides, collecting —A + A on the left, and
multiplying through by - 1 to solve successfully for*. At some
point, people will probably learn to collapse into a single step
the actions of removing the A from the left-hand side of the
equation, changing the sign on the B, and adding -A to the
right-hand side. What happens during this transition, and how
does it take place? Under what circumstances do people start
skipping steps? In the experiments described in this article we
examine this process. First, we discuss some of the learning
mechanisms that have been proposed to account for step
skipping.

Step-Skipping Explanations

There are a few theoretical approaches to step skipping that
differ in their details but that involve the same problem-solving
framework (Newell & Simon, 1972). As such, they make use of
many of the ideas germane to that framework (e.g., operators
and production rules, among others). An operator is a rule that
can be applied to transform the current problem state into a

576

STEP SKIPPING 577

different one. Operators are often conceived of as production
rules, which are condition-action (IF-THEN) statements that
act on the current problem state. A number of these explana-
tions amount to the claim that step skipping involves replacing
smaller grain operators by larger grain operators. Three such
explanations are rule composition, chunking, and analogy.
Another view, Logan's (1988, 1990) instance theory, differs
from the previous three by stating that truly expert perfor-
mance is not characterized by the application of operators but
rather by retrieval of a specific example. We discuss each of
these four explanations in turn.

Rule Composition

One view of how step skipping occurs is by collapsing
operators that follow each other in a problem solution into a
single operator (Anderson, 1983; Lewis, 1978). Such collapsing
of adjacent operators is referred to as rule composition. These
composed operators would then produce step-skipping behav-
ior by not outputting the intermediate products that the single
operators produced. For example, when first learning algebra
and asked to solve the equation presented earlier, — x — A =
B, the student would probably solve the problem in three steps
(the application of three operators) by first adding a +A to
both sides, simplifying both sides to get — x = B + A, and
finally multiplying through by - 1 to get the final line, x = — B
- A. Operator composition might compose the first two steps
into a single operator that directly produced —x = B+A, and
then compose this with the third step to create a single
operator that produces the final result. Rule composition is an
attractive idea because it provides a very concise account of
how step skipping occurs.

Work by Lewis (1981), however, casts doubt on whether step
skipping can merely be due to composition of adjacent steps.
He investigated what he called powerful operators. These
operators do the work of a series of others, as in the
combination of the transposition and collection operators in
algebra (shown previously). Their critical feature is that they
can combine nonadjacent steps together, a condition that
would not happen with standard rule composition. For ex-
ample, a novice learning algebra would probably solve the
equation* + 2(x + 1) = 4 by first multiplying both* and 1 by 2,
and then adding x and 2x together for the next step. However,
an expert would probably immediately write 3tc = 2, with the 2
and the x being multiplied and then added to thex before the 2
and the 1 are multiplied and subtracted from the 4. Thus,
nonadjacent steps are being combined to produce the operator
that writes out the 3x. Lewis referred to this as the problem of
going from a two-pass system (solving a problem in multiple
steps) to a one-pass system (solving a problem in a single step).

Chunking

Newell's (1990) theory of cognition, Soar, has a single
mechanism that attempts to provide a psychologically plau-
sible account for all of skill acquisition. This mechanism, called
chunking, operates when an impasse in the problem-solving
process occurs. An impasse occurs when the Soar system
reaches a state in which no operator applies or in which the

knowledge to apply an operator does not exist. Once an
impasse happens, Soar will set a subgoal to solve the impasse
and then creates a new problem space in which to solve the
subgoal. Once the subgoal has been solved, Soar creates a new
operator, a chunk, using the results obtained after the impasse
is resolved. The chunk is built by starting at the results of the
impasse and backtracing (i.e., working backward) through the
elements before the impasse that gave rise to these results. The
operator that represents the chunk is then constructed by using
these original elements that occurred before the impasse as the
condition side of a production rule and the results after the
impasse as the action side. These chunks could be thought of
as a composite operator because the operators used to solve
the subgoal would be represented by the resulting chunk.
Under such a scheme, the learner builds larger and larger
chunks. For example, a person may eventually create a single
chunk (in the form of a production) that would produce
x = -B -A when presented with - x - A = B. It is important
to note that within Soar, not only is the process by which a
system solves a problem important, but the product is as well.
Because of this, Soar avoids the problem of nonadjacent
operators inherent in the rule composition view. In building
the chunk, Soar backtraces from the results of solving an
impasse to the conditions before the impasse.

Compiling Rules From Analogy

Within Anderson's (1993) ACT-R framework, cognitive
skills are realized by production rules. Skilled performance is
characterized by executing these production rules to do the
task at hand. The only mechanism by which new production
rules can enter the system is through analogy to an existing
example in declarative memory. When given a task to do for
which no production rules apply, ACT-R attempts to locate a
previously acquired declarative example that exemplifies the
application of the correct operator that is similar to the current
goal. If a similar enough example is found, the analogy
mechanism produces a production rule that will generate the
correct action. In short, novices solve problems by referencing
examples, whereas experts apply operators. Step skipping in
which this analogy mechanism is used could be produced by
forming analogies between examples that incorporated the
application of multiple operators. A model of such a process,
including a fuller account of the analogy mechanism, is
presented after a discussion of the empirical results.

Retrieval of Examples

In Logan's (1988, 1990) theory, performance on a task is
governed by a race between executing the appropriate opera-
tor and retrieving a specific example. When first starting to do
a task, people will apply the necessary operators. Eventually a
strong enough association will be made between a specific
stimulus and its appropriate response, and so direct retrieval
of the response can take place. In comparison to Anderson's
(1993) theory, Logan's makes the opposite prediction—that
novice performance is marked by application of operators,
whereas skilled performance is done by retrieval of past
examples. Step skipping in such a framework could perhaps

578 BLESSING AND ANDERSON

occur once the task is done by direct memory retrieval. If one
made the assumption that the retrieved memory trace of a
problem solution could contain multiple steps of that problem
solution, the problem solver could only produce the last step
contained in the instance, thus eliminating intermediate steps.
This would allow the problem solver to skip intermediate
steps.

The two previous theories are not necessarily mutually
exclusive, and evidence that supports both theories has been
collected. In a study done by Anderson and Fincham (1994),
some participants were given only examples of rule applica-
tions. Participants were able to extract the correct rules from
the examples and were able to apply them to problems
presented to them. Even in the absence of repeated examples,
participants still exhibited power law learning, contrary to
what the strong version of Logan's instance theory would
predict. However, in unpublished follow-up studies, Anderson
and Fincham found that learning was faster when examples
were repeated. Carlson and Lundy (1992) also tested partici-
pants' ability to learn rules, varying the consistency of both the
examples and the sequence of operation. They found sepa-
rable benefits of both. That is, participants were able to learn
faster either if the data were consistent (i.e., repeated ex-
amples) or if the order of operations was consistent.

The Current Experiments

The process by which people start skipping steps has not
adequately been explored. Since the work done by Lewis
(1978), few researchers have examined how people learn to
skip steps in solving problems. One issue that arises when
people begin to skip steps is whether they are actually mentally
skipping steps or are only physically skipping steps. That is,
people may just be going through each step in the problem
mentally, and only performing some of the steps, as opposed to
mentally going straight from the first step to the last step. We
refer to this as overtly skipping steps versus covertly skipping
steps. We discussed the above-indicated theories in terms of
how they account for covert step skipping, but no experiments
have been done to test their claims.

In the work presented in this article we examined the
development of step skipping within a particular task, one
similar to algebra. By a close examination of people perform-
ing our task, a better understanding of the skill acquisition
process could be attained. Because the task was relatively easy,
participants could reach expert status within a single experimen-
tal session. By comparing their knowledge and use of proce-
dures at the beginning to that of the end, we established the
two endpoints for which a process has to account. Further-
more, by examining the participants' actions between these
two endpoints and from concurrent verbal protocols (Ericsson
& Simon, 1990), we were able to investigate participants' use
of examples, their step-skipping behavior, and their change
from making each step explicit to skipping certain steps. From
this analysis we were able to develop a process model of the
observed behavior, part of which we have implemented as an
ACT-R (Anderson, 1993) model.

Table 1
How the Symbols Used in This Task Map Onto Algebraic
Symbols (Experiments 1 and 2)

Algebraic symbol

*

Operands

X

=

Experiment 1

Symbol in task

#
©

A

r

n&>

When and how do people start skipping steps when solving
problems? Experiment 1 was designed to explore this question.
By instructing participants in the rules of our task and letting
them solve problems in it, but not forcing them to make all
steps explicit, a situation was created in which we could study
how problem solvers naturally learn to skip steps. Also,
participants were instructed to think aloud while solving the
problems. By studying these protocols, the relation between
physically skipping steps and mentally skipping steps can be
more closely examined. It could be the case that problem
solvers who are overtly skipping steps are still going through
each step mentally, in which case no compositional processes
are occurring.

As stated previously, the task we designed was an analog of
algebra. The rules defining the task are given in Appendix A.
In place of the standard four operators and Roman letters, we
used Greek and various other symbols to mask the similarity to
algebra. Table 1 lists the symbols we used and how they map
onto the standard algebraic symbols. In most of our examples,
we used the standard algebraic symbols so that the reader
could use previous knowledge to decode parts of the task.
Table 2 contains an example of one of the hardest problems,
with all of the steps needed to solve the problem made explicit.
The first step in solving this problem is to add ®<i> to both sides
of the character string (the ** divides the string into left and
right halves) in accordance with Rule 1. For the second step,
the . . . V4> . . . ®4> is deleted from the left-hand side by
application of Rule 5. For Steps 3 and 4, #fl is added to both
sides of the string (Rule 1 again), and then t h e . . . ©H... #ft is
deleted from the left-hand side (Rule 3). For the final step,

Table 2
Sample Problem

Step

Given step
Stepl
Step 2
Step 3
Step 4
Step 5

What participants saw

V4>°nV^<-»VA
W d>©O V^^®d)4-> V A® (I)
®fl V[̂ <̂~> V A® (I)

°n ̂ ^"#11** v A®$#n

Algebraic mapping
-^^-fl-x=-C
-y4 +B-X+A = -C+A
+B-x=-C+A
+B-x*B=-C+A*B
-x=-C+A*B
x=+C-A*B

STEP SKIPPING 579

Rule 8 is applied to eliminate the V from in front of the 9. It
should be noted that the rules are constructed such that this is
the only order of steps possible in solving this problem.

Method

Participants. Twelve Carnegie Mellon University undergraduates
were paid to participate in this experiment. We placed an ad on a local
electronic bulletin board, which many undergraduates read, to solicit
the participants.

Materials. We constructed an algebra analog for this experiment.
Differences existed between this task and algebra, and so the mapping
was not perfect. For example, the division-multiplication operator pair
acted more like the addition-subtraction operator pair than in
standard algebra. Also, this task had a more limited order of
operations. There are rules of precedence (Rules 10 and 11 in
Appendix A), but to keep the task simple, parentheses were not used
as some of the allowable manipulations would look strange in algebra.
Also, any operator was allowed in front of*, so it was possible to end
up with an equation that looked like *x = A + B. The order of
operations was constrained so that at each step in any problem, only
one rule was applicable. That is, at any intermediate step in solving a
problem, only one operator can be used to achieve the next step in the
problem. There was never a choice between operators.

In all, the task consisted of 11 rules that the participants used to
manipulate the character strings to achieve the goal state, which was to
"isolate" (i.e., solve for) the 3" symbol on the left-hand side of the
equation. One rule (Rule 1 in Appendix A) resembled the algebraic
rule that states the same thing can be added to both sides of an
equation (e.g., one can add a +A to both the left- and right-hand
sides), four rules (Rules 2-5) dictated how operators and operands
could be removed from one side of an equation (e.g., if +A —A
appeared on the left-hand side, it could be deleted from the equation),
four rules (Rules 6-9) described how to remove a sign in front of the*
symbol when one appeared, and two rules (Rules 10 and 11) provided
information on precedence and the order of operations. The division
removal rule (Rule 9, which applied when the equivalent of Ix
appeared by itself on the left-hand side) depended on what the
right-hand side of the equation contained. Because of this, the division
removal rule had two incarnations: an easy one and a hard one.

These rules were presented to participants as screens of informa-
tion, one rule per screen. The screens were similar to one another, with
a schematic of how the rule applies, a short text description of the rule,
and an example of an application of that rule. The task was imple-
mented as a HyperCard 2.1 stack (Apple Computer, 1991) which was
run on an accelerated Apple Macintosh Ilci computer connected to a
two-page monitor.1

Procedure. All participants were told to think aloud while solving
the 200 problems they were given. (Because of a computer error, 1

Table 3
The Four Different Types of Problems (Experiment 1)

Step Prototype equation8

Two step
Three step
Four step
Five step

x®A=®B
®x®A =®B

x@A@B = @C
® ®

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Blocks of 5 Trials

Figure 1. Mean number of rule references per problem by problem
block (Experiment 1).

participant received only 167 problems. This has been accounted for in
the data, and the results do not suffer from this incident.) Before
starting the task, each participant was instructed on what it meant to
think aloud and was given two think-aloud warm-up tasks: one a
mental addition problem and the other counting the windows in their
childhood home. The rest of the experimental instructions was part of
the HyperCard program. The participants had to go through all of the
rule screens before starting to solve the problems. Once they started
solving problems, participants could refer back to a particular rule
screen by clicking on the appropriate button. Each participant re-
ceived 50 problems of four different types, which are detailed in Table
3. The problems were randomly generated on-line within certain
parameters to ensure that each rule was presented an equal number of
times to each participant. The program kept track of the time between
each symbol clicked and what symbol was clicked, so a complete record
of the participants' responses to each problem was obtained.

Each problem was presented in a box near the top of the screen. The
participant then used an on-screen keypad that contained all of the
symbols used in the task to click out, with the mouse, a correct step that
would follow from the problem or from one of the lines the participant
had already clicked. A delete key was available to erase any character
they had clicked. The participant's lines appeared in a box below the
problem. Once the participant had clicked out a step, he or she clicked
a special key to have the computer check the answer. If the step they
had clicked out was a correct one, the computer would respond,
"Good," and the participant could continue with the problem. If the
line clicked out was the problem's solution, then the computer would
respond, "Excellent," the box containing the participant's lines would
clear, and a new problem would appear. If, however, the line was
incorrect, the computer would respond, "Try again," the participant's
line would be erased from the box below the problem and moved to a
different location, and the participant would then have another chance
to click out a correct line. If the second attempt was not correct, the
computer would respond, "Here's the correct line," the next correct
step (following from the last correct line) would appear, and a dialog
box would appear listing which rule the participant should have
applied. The participant could also click on a button with a ? to receive
a hint. This feature was used very rarely, only 10 times in total by the 12
participants.

aThe © represents any of the four operators. An operator can
optionally appear as the first symbol on the right-hand side. .4, B, and C
represent any of the four constants used. For Type 2 and Type 4
equations, the* can appear in any of the positions.

1 The maximum temporal resolution of HyperCard is Vm of a second.
The program that we used to collect data was written to minimize any
inaccuracy due to this fact. Furthermore, the timing data of interest
were sufficiently long enough that any inaccuracies due to poor
temporal resolution should not matter.

580 BLESSING AND ANDERSON

Results

Participants spent an average of 13.S min going through the
introduction and the rules of the task (IS screens in all). The
average amount of time working on the 200 problems was 91
min, with the extremes being 61 min and 120 min. Each
participant made references back to the rules 29.7 times on
average. Figure 1 shows the average number of times partici-
pants referred back to the rules per problem for the first 100
problems (the number of referrals stays essentially at zero for
the last 100 problems). Note that we have blocked trials
together in this graph, and in the graphs to follow, to aid
readability. Participants appeared to rapidly master the rule
set.

Before examining the step-skipping behavior of the partici-
pants, and all of them did learn to skip at least some steps, it is
worth looking at the overall time it took participants to work

on the problems. Figure 2 graphs the total time participants
spent on a problem of a particular type by block. For each
problem type, a power curve of the formy = a + bNc (where a
is the asymptote, b is the performance time on the first block, N
is the block number, and c is the learning rate) has been fit to
the data (Newell & Rosenbloom, 1981). As can be seen, the fit
to the data was quite good. However, behind this quite regular
quantitative finding, which was found in many different tasks,
lie large differences in the qualitative aspects of how partici-
pants were solving the problems. As we see, different partici-
pants began skipping different steps at different times.

Figure 3 depicts the overt step-skipping behavior of the
participants. Each line represents a particular kind of step that
a participant could skip and shows the number of participants
that had consistently skipped that step as a function of the
number of opportunities to skip the step. Referring to the

Fitted line: y - 5.60 + 50.75X-8*0

.946

2-Step problems (X +A = B)

3Step problems (+X + A ~B)

Fitted line: y • 1.52 + 113.1X--660

#•=.936

4-Step problems (X+A + B

Fitted line: y = 10.51 + 253.7X"1-306

.983

SStep problems (+X + A + B~C)

Fitted line: y « 18.86 + 282.5x"'1S3

.970

4 5 6 7
Blocks of 5 Trials

10

Figure 2. Overall time for solving problems by block for each problem type (Experiment 1).

STEP SKIPPING 581

m-mS"

1 Transformcrtlon

2 Transformations

Plus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Opportunity*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Opportunity t

Figure 3. Step-skipping behavior of participants (Experiment 1).

example displayed in Table 2, skipping a one-transformation
step would be skipping either Step 1 or Step 3. A participant
would be credited with this if they clicked Step 2 or a later step
on receiving the problem statement or Step 4 or 5 after clicking
Step 2. Skipping two-transformation steps, possible only in
four- and five-step problems, would occur when the participant
received the problem statement and then clicked out Step 4 or
Step 5. The other types of step skipping depicted in Figure 3
refer to the steps in which an operator was removed from in
front of the x. From the example in Table 2, participants would
have skipped the minus removal step if they did not click out
Step 4. That is, participants were credited as having skipped
the operator removal steps when they did not explicitly click
out the step involving the operator andx by themselves on the
left-hand side of the character string. Throughout the problem
set, there were 300 opportunities to skip a one-transformation
step (the two- and three-step problems each had one, and the
four- and five-step problems each had two), 100 opportunities
to skip two transformations at once (once on each four- and
five-step problem), and 25 opportunities to skip all four rules
dealing with removing each operator in front of the x. (Given
the random nature of the problem generator, it would be
expected that 9 of the 25 problems containing division removal
would involve the hard version of that rule. In fact, each
participant received an average of 8.1 problems involving the
hard division removal rule.) Because of these differences in
rule application opportunities, the graph in Figure 3 does not
represent the order in which the participants began to skip the
rules.

As noted, Figure 3 graphs consistent step skipping. Consis-
tent skipping is defined not only as skipping the step on that
opportunity but also on the next three opportunities in which

that step could be skipped. In 72 of the 84 cases, once a
participant started to skip a step they continued to skip that
step. Thus, it was seldom the case that a participant would skip
a step once, then on the next opportunity not skip that step. Of
the 12 cases in which a participant would relapse into making a
past-skipped step explicit, all were either the minus or the hard
division operator elimination step. It should be stressed that
this was a measure of overt step skipping, not covert step
skipping. That is, this graph depicts only steps that participants
were physically skipping. It could be the case that participants
were still mentally going through each transformation, and so
were not covertly skipping steps. However, by examining
protocol data, to be discussed later, more light can be shed on
this particular issue.

One of the curious features of the data is that we never saw a
participant presented with a four- or five-step problem skip to
Step 3 (see Table 2). That is, participants would first start
skipping steps like Step 3. The additional complexity that
occurred when an operator and operand were added to both
sides, one of which would be taken away again on the next step,
made this an unnatural step to skip. Participants only skipped
to equations as simple as the original. It appears, for this task
at least, there was somewhat of a natural progression in how
steps were skipped, that of skipping the cancellation steps first
(Steps 1 and 3), then the extra addition step (Step 2), and then
the step that removed the operator in front of the x (Step 4).

The subjectively easier steps (in both our view and the view
of the participants in postexperiment questioning) were gener-
ally skipped first. It is also the case that the more practiced
rules were skipped first as well. The one-transformation step,
for all participants, was always the first one skipped, usually
followed by doing two transformations as one step. In all cases,
once participants started skipping the one-transformation step
for one operator-operand pair, they skipped it for all pairs.
The typical order that the operator removal steps were skipped
went (a) plus and multiplication (which were essentially
identical rules), (b) easy division, (c) minus, and then (d) hard
division. Not all participants skipped all steps, as is evident
from Figure 3. One participant only skipped the single-
transformation steps. When asked why he made all the other
steps explicit, he responded, "[I]f I tried to do two steps at
once, it'll be just like four times the chance for error."

An interesting feature of the graph is that in almost all cases,
the participants had to click out at least one instance of a step
before it could be skipped. Only 1 participant never did a
single transformation in two steps, only 1 participant never did
two transformations on separate lines, 1 participant immedi-
ately skipped easy division, and 2 participants immediately
skipped the plus-operator elimination step. For the rest,
however, at least one occurrence had to be completed and,
usually more, before that step was skipped.

The graph in Figure 4 shows the mean number of lines
clicked out by the participants for each problem throughout
the experiment. When this number is one, the participants are
clicking out the answer as their first response after the problem
is displayed, skipping all intermediate steps. At the start of the
experiment, however, the participants were clicking out mul-
tiple lines per problem, and so this number is higher. Figure 5

582 BLESSING AND ANDERSON

1 2 3 4 S 6 7 S 9 10 11 12 13 14 15 16 17 18 19 20
Blocks of 10 Trials

Figure 4. Mean number of lines clicked by problem block (Experi-
ment 1).

graphs the mean seconds per character (i.e., total solution time
divided by number of characters clicked), averaged over all
participants, for each problem separated by the four different
problem types. As can been seen, this measure steadily
decreased throughout the experiment. Furthermore, as is
evident from Figure 4, the number of characters that each
participant clicked out per problem also decreased. This
means that not only were participants getting faster at clicking
out their answer, but they were also clicking out fewer lines
(and therefore fewer symbols) per problem. All participants by
the end of the experiment, except for the one, clicked out only
the final line for most problems. Thus, hiding behind the
regularity in Figure 2 are two more regularities depicted in
Figures 4 and 5—a reduction in the number of physical actions
and a reduction in the time per action.

As can be seen from Figure 5, the major difference in time
per character occurs between problems with an even number
of steps and problems with an odd number of steps. The
difference between even and odd steps (two step = four
step < three step = five step) was significant by a Duncan
multiple range test (p < .01). The problems with an odd

number of steps are the ones in which the participant had to
remove a sign in front of the x. The importance of that fact
becomes more apparent in Experiment 2.

All participants, except for the one, eventually got to the
point where they would click out the final line (i.e., the
solution) of a problem as their first line of input. The graph in
Figure 6 examines the individual latencies between clicking the
symbols for these solutions, which we termed perfect solutions,
for the three-step problems. Because each participant started
skipping steps at a different time, participants had a differing
number of these perfect solutions. Each point on the graph
represents at least 8 participants. The largest latency was
before the first keypress (the x), in which the best fitting
function was a power curve (see Table 4). The latencies
between the other keypresses remained relatively constant
throughout the problem set. An analysis of the other lines, the
nonperfect solution lines, revealed a similar pattern. These
results are suggestive that participants plan the whole line they
are going to type next and then simply click out the sequence of
symbols that constitute the line. The time to click out each line
could therefore be divided into planning time and execution
time. Planning time would be the time spent before the first
keypress, and execution time would be the amount of time
spent per character clicking out the rest of the line.

We fitted power functions, as in Figure 2, to the planning
and execution time. Table 4 shows the best fitting power
functions for each type of problem in the data set and with
various constraints placed upon the parameters. As can be
seen in Table 4, the fit was still good even when there were only
six free parameters (where b varies for each type of problem
and a and c are constrained to be the same across problem
types). Performing F tests on the basis of the deviations and
the number of free parameters did reveal that something is lost
in planning time when going from 12 free parameters to 6 free
parameters, F(6, 28) = 8.44, MSE = 0.305, p < .05. In
contrast, nothing was lost by imposing the constraints on the
execution time, F(6, 28) = 1.07, MSE = 0.006. Despite the

0.5-

2-step(X + A = B)

3-step (+ X + A » B)

4-step (X + A + B = C)

5-step (+ X + A + B = C)

1 2 3 4 5 6 7 8 9 10
Blocks of 5 Trials

Figure 5. Mean seconds per character by block for each problem type (Experiment 1).

STEP SKIPPING 583

12-,

10-

8-

6-

4-

2-

4 5 6 7
Blocks of 3 Trials

10

Figure 6. Latency by block between each character in "perfect" solutions of three-step problems
(Experiment 1); op = operator.

slight loss of fit, it is impressive that the differences among
conditions could be reduced to a 6-parameter model with little
loss in prediction. In the 6-parameter model, the values of a
and c are constant across number of steps skipped (and a
estimates to be zero). Constraining a, the intercept term,
implies that participants are converging to the same physical
limit in producing these lines. Constraining c, the exponent,
implies that participants have the same learning rate for each
type of problem. The 1 parameter that separates the condi-
tions is the multiplicative factor b. The variations in this
parameter were quite large, particularly for the planning

times. This parameter was large when more steps were being
skipped, suggesting that participants may still have been going
covertly through the steps and only overtly skipping them.

Discussion

An analysis of people learning this task sheds light on how
people learn to skip steps, both overtly and, as to be discussed
shortly, covertly. At the beginning, participants performed the
task according to the given rules. When given a problem, they
would either think over or refer back to the rules and pick the

Table 4
Best Fitting Power Functions (y = a + bNc) for Symbol in Final Line by Problem Type

Step

Two step
Three step
Four step
Five step

Two step
Three step
Four step
Five step

Two step
Three step
Four step
Five step

Planning

Latency R2

12 free parameters2

6.59AT0545 .95
1.50 + 9.95AT-0628 .96
1.73 + 9.87AT1 -151 .99

13.52AT-0375 .94

9 free parameters'"

0.77 + 5.95N-0™5 .94
2.04 + 9.49N-"-705 .96

10.92AT-0-705 .98
4.09 + 9.78N-0-705 .89

6 free parameters0

619Ar-o.477 95
11.23JV-0-477 .96
8.90N-0477 .96

14.96N-0-477 .93

Execution

Latency

l.UN-0.202
0.81 + 0.74JV-0889

0.33 + 0.99JV-0-243

1.58N-0171

0.47 + 0.68W-0-425

0.49 + 1.00W"0-425

0.65 + 0.68AT0-425

0.77 + 0.83AT-0-425

l.l3N-°m

1.40AT-0192

1.36//-°192

1.637V-0192

R2

.89

.94

.76

.74

.88

.92

.76

.73

.89

.89

.76

.74

Note. Parameters were constrained to be positive. If zero, it was not included in the equation.
"No constraints. bc constrained to be the same fit value across problem type. ca and c constrained to be
the same fit value (which for a was zero) across problem type.

584 BLESSING AND ANDERSON

one rule that should be applied at that point. Some partici-
pants flipped back and forth between the screen with the
problem and the relevant rule screen, making sure the rule was
applicable in that situation. Soon, however, participants did
not refer back to the rules. When they did refer to the rules, it
appeared to the experimenter that they paid almost sole
attention to the example at the bottom of the screen and not to
the text description or the schematic.

The protocol data, as the following discussion shows, are
useful at shedding further light on the processes the partici-
pants were going through as they learned the task. For
example, as people went through the experiment, they also
began to reorder the parts of a problem they considered first.
This was evident from their protocols (see the first sequence in
Appendix B). However, many of the protocols were simply
verbalizations of what the participants were clicking. As such,
a rigorous analysis of them would prove not useful. We present
the protocols in the following text and in Appendix B as
representative of the more substantive comments that the
participants made. The participants at the beginning of the
experiment, as per the given rules, would move the operator
and operand pairs from the left-hand side to the right-hand
side and would then consider the operator in front of the x, if
one existed. By the end of the problems, participants were first
considering the operator in front of the x, if one existed, and
then performing the transposing operations. This represents a
major strategy shift, but one that makes solving the problems in
one step easier, as can be seen in Appendix B. When not
skipping steps, it is obviously of no use to worry about any
operator in front of the x until the very last step (Appendix B,
Sequence 1, first problem). Even when participants began to
skip all intermediate steps, they initially continued to consider
the operator in front of x last (Appendix B, Sequence 2, first
problem). However, later on, all 11 of the participants who
consistently skipped all intermediate steps looked to see if an
operator existed in front of the* (e.g., Sequence 1, second and
third problems; Sequence 2, third problem—"I have to swap
the ®s and ¥ s," realizing there is a V in front of the 3s) before
the end of the problem set.

Lastly, another difference between participants at the begin-
ning of the experiment and those same participants at the end
was the use of shortcuts. These shortcuts were also involved in
making the problems easier to solve in one step. At the
beginning of the experiment, of course, participants had no
opportunity to make use of shortcuts because they were
following the given rules. However, participants picked up a
few shortcuts that aided in manipulating the character strings.
Perhaps the most useful shortcut, and one that most partici-
pants acquired, helped in solving problems in which a minus
sign was in front of the*. As an example, here is a problem with
its worked-out solution:

-x + A = + B

-x +A -A = + B -A

-x= +B-A

x = - B +A.

If this was among the first of the problems presented to
participants, they would transpose the +A to the other side by
using the inverse operator of plus, and when it came time to
eliminate the minus sign from the x, the —A would go back to
what it was. Even when participants started doing these types
of problems in one step, many would think of "double
reversing" (4 participants said essentially that) the plus sign in
front of the A. However, if this was near the end of the problem
set, participants would see that there was a minus sign in front
of the*, would know that the plus sign in front of the A would
stay the same on the other side, and so would just carry it over
(9 participants explicitly mentioned this property). The ex-
ample in Appendix B, Sequence 2 is typical of how participants
progressed through this task.

Once participants started doing problems, they soon began
to skip steps. Many participants began skipping the single-
transformation step after only two or three problems. Most of
the time when participants began to skip steps, they would just
click out a line, skipping a step in the process (Appendix B,
Sequence 2, Problems 1 and 2 contain an example of this).
Occasionally (three times), participants would explicitly say
before clicking out the line "I think I'll skip a step here," and in
the next line they would skip a step. Also, sometimes partici-
pants would have a line partially clicked out and would then
delete the symbols they had, saying, "Oh, I can skip this step"
(this was explicitly said twice), and would then click out a new
line, skipping the step they had previously started to click. This
directly raises the issue of overt versus covert step skipping. On
the basis of the protocols, it appears that when participants
started to skip steps, they were merely doing all the same
operations in their head and were only overtly skipping steps.
Later on it appears that participants were actually changing
the rule base and therefore mentally skipping steps as well, as
evidenced by participants planning to copy directly a + over
rather than going through a double reversal in their plan.

It would be interesting to graph the problems in which no
step skipping occurred versus problems in which some of the
intermediate steps were skipped versus problems in which all
the intermediate steps were skipped, and then examine the
best fitting power curve for each graph. In such a way, we could
get a better handle on how these individual power curves
conspired to produce the good fitting power curves seen in
Figure 2. That is, it would be interesting to see if discontinui-
ties exist between when people go from clicking out all of the
steps to clicking out only some of them. Unfortunately, many
of these graphs would have too few data points to properly fit a
curve because participants began skipping some steps after
only three or four exposures to the rule. The next experiment
was designed such that people were explicitly told when to
start step skipping so that such a comparison could be made.
Also, in Experiment 2 we attempted to show that people can
choose to initiate step skipping at any point in the experiment,
even on the first trial. In contrast to some theoretical analyses,
step skipping does not require first overtly performing the
steps. When people start step skipping right away in this task it
is highly plausible they are only overtly step skipping, having
had no chance to rehearse skipping steps before beginning to
solve problems. As these participants have never experienced

STEP SKIPPING 585

the results of the step combinations, it is hard to imagine that
they have rules yet to produce the results directly.

Experiment 2

In this experiment participants were told when they were
allowed to start skipping steps. By exercising more control over
participants' step-skipping behavior, a better analysis could be
done of what transfers between making steps explicit and
skipping steps. One group of participants was instructed to
skip all intermediate steps immediately; whereas two other
groups began the experiment clicking out all of the required
steps. At different specified points in the experiment, these two
groups were told when they had to begin skipping all interme-
diate steps. It was expected, on the basis of the participants in
the first experiment, that participants in the first group, those
who had to start overtly skipping steps immediately, would
have a difficult time initially performing the task. By comparing
across these three groups, inferences could be made as to
whether the rule base that the participants used changed as the
experiment progressed.

The task used for this experiment was almost identical to the
one used in Experiment 1. However, this experiment contained
no four- or five-step problems. A set of problems that took only
one step, of the form © x = © A © B, was added. These
changes were made to ensure that all rules were used an equal
number of times. One important feature of these materials is
that, unlike Experiment 1, the final step contained the same
number of symbols independent of number of steps skipped.
This meant that when participants skipped steps, they were
clicking out the same kind of line no matter how many steps
were skipped.

Method

Participants. Thirty-six Carnegie Mellon University undergradu-
ates participated in this experiment for course credit and pay. Data
from 6 other participants were collected but not used in the analyses.
Four of these participants used the hint facility on almost every
problem, and 2 participants made more than three times the number
of errors made by the other participants. These participants were
evenly distributed through the three groups used in this experiment.

Materials. As stated in the introduction, the task used for this
experiment was similar to the task used in Experiment 1. One-step
problems were added, however, and the four- and five-step problems
removed. Because there were no four- or five-step problems, the two
rules that dealt with precedence (Rules 10 and 11 in Appendix A) were
no longer needed, so this task made use of only nine rules. Finally,
Rule 9 describing how to remove the division sign in front of x was also
changed so that no matter what appeared on the right-hand side of the
equation, the same procedure (switch the position of the two right-
hand side operands) was applied.

Procedure. The procedure was similar to that of Experiment 1.
These 36 participants, however, did not think aloud while solving the
problems. The participants initially went through the nine rule screens
and the screen of examples. Depending on which group the participant
was placed in, the instructions differed. One group of participants was
instructed that they must immediately skip all intermediate steps. That
is, when given a problem, the first line they clicked out had to be the
final line in the problem's solution. The other two groups were
informed that to start with they must make each of the problem's steps
explicit, and at some point during the experiment, they would be told

when they had to start skipping steps. They were not told when that
point would be within the problem set, but when that point arrived, a
dialog box would appear on the screen saying that the participant must
now skip all intermediate steps. For one of the two groups of
participants, this dialog box appeared after they had completed 24
problems, and for the other group after 96 problems (halfway through
the problem set). Twelve participants were in each of the three groups.
Participants were allowed to take a break whenever they needed. Only
2 participants took a break, and no participant complained about the
length of the experiment.

Results

Table 5 summarizes the amount of time participants spent
on the experiment in each of the three groups. Time spent
reading the instructions did not differ significantly among the
three groups, F(2, 33) = 0.87, MSE = 9.14, p > .1. As to be
expected, though, the time spent solving the problems did
differ between the three groups, F(2, 33) = 21.76, MSE =
66.48, p < .01. Participants who could not start skipping steps
until after 96 problems had to click out at least 288 lines;
whereas participants in the other groups had to click out at
least 192 (skip immediately) or 216 lines (skip-after-24 prob-
lems). Even though participants who skipped steps immedi-
ately took a little longer per problem initially (see Figures 9
and 10), the number of lines required of the skip-after-96
group caused them to take longer in completing the experi-
ment.

We also did an analysis of variance of how often participants
entered incorrect lines. An error was when the participant
clicked the checkmark button, but the current line was not a
valid line. Participants in the three groups made statistically
the same number of total errors, F(2, 33) = 1.39, MSE = 2.65,
p > .1. Even though participants in the skip-after-96 group had
to click out more lines, we still expected participants who had
to start skipping steps immediately to do worse, on the basis of
our observations in Experiment 1. Figure 7 graphs the probabil-
ity of a participant making an error on a line for each type of
problem as a function of problem block, which was split into
each of the three groups. Participants improved over the
experiment, F(7, 231) = 25.61, MSE = 0.62, p < .001. Not
surprisingly, participants made more errors on the problems
with more steps, F(2, 66) = 21.15, MSE = 1.07, p < .01. The
data were a bit erratic, but there was a significant interaction
between problem block and group, F(14, 231) = 2.11, MSE =
0.62, p < .01, which might be interpreted as participants
making more errors when they first had to skip steps in the
skip-immediate and skip-after-24 group. There was also a
significant two-way interaction between problem block and

Table 5
Mean Time Spent Reading Instructions and Solving
Problems (Experiment 2)

Step

Skip immediately
Skip after 24 problems
Skip after 96 problems

aThirteen screens.

Reading instructions3

(min)

10.1
9.5

11.1

Solving problems
(min)

38.2
44.1
59.5

586 BLESSING AND ANDERSON

IStep problems (+ X

0.3-1

B)

- • - Skip Immediately

- © - Skip After 24

- o - Skip After 96

2-Step problems (X + A-

0.3-i

, 0.2-

3 4 5 6
Blocks of 24 Trials

Skip Immediately

Skip After 24

Skip After 96

4 5 6
Blocks of 24 Trials

3-Sfep problems (+X + A = B)

0.3 -i

1 0.2-

L O . 1 -

- • - Skip Immediately

- e - Skip After 24

Skip After 96

1 2 3 4 5 6 7 8
Blocks of 24 Trials

Figure 7. Probability of making an error by block for each problem type (Experiment 2).

number of steps, F(14, 462) = 3.16, MSE = 0.56, p < .001,
which could be interpreted as the participants improving less
rapidly in the three-step condition. There were no other
significant effects.

As in Figure 2 for Experiment 1, Figure 8 graphs the total
time participants spent on a problem of a particular type by
block. Only the curves for the two groups who had to do the
intermediate steps before beginning to skip them are shown.
Unlike Figure 2 for Experiment 1, there was a discontinuity for
these participants who started skipping steps after problem 96
at the point where they were required to skip steps (marked by
a vertical line in the graphs). The participants who skipped

after 24 problems were in such a steep part of their learning
curve that the discontinuity was less apparent, particularly with
the trials blocked. In Experiment 1, the different times when
participants started skipping steps masked such discontinui-
ties. In fitting the curves shown in Figure 8, we made the
assumption that once participants were required to skip steps,
only the asymptote (the a parameter) would change, but not
the multiplicative factor (the b parameter) or the learning rate
(the c parameter). We also made the assumptions that the
learning rate did not differ at all between the curves and that
the different two-step and three-step problems had the same a
and b parameters (these assumptions are similar to the most

STEP SKIPPING 587

Skip After 24
2Step problems (X + A = B)

= 20.48 + 91.18N"1-21

#-.99

y - 10.56 + 91.18N"121

3Step problems (+X +A = B)

y = 35.50+155. IN"121

y= 10.56+155.1N"1-21

= .97

Skip After 96
2Step problems (X+A-B)

y = 20.48 +91.18N"1-21

#=.98

y= 10.56 +91.18NT1-21

3-Step problems (+X + A
140-,
120-i

? 100-i
80-i

40 -i
20-i

y = 35.50+155.1N"1-21

Y
#•=.98

y= 10.56+

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Blocks of 12 Trials

Figure 8. Overall time by block for each problem type (Experiment 2).

constrained model in Table 4). This resulted in a model with a
total of six free parameters. When participants started to skip
steps, then, they were essentially on the same learning curve,
but the point to which they reached asymptote had been
shifted down. This shift down corresponds to the decrease in
the number of symbols that needed to be clicked out. The best
fitting curves and their equations are also shown in Figure 8.
This produced a better fit than not varying the a parameter at
all over blocks, F(l, 58) = 42.05, MSE = 235.80, p < .01.
Although this gave a fairly satisfactory global fit, as in Experi-
ment 1, we looked at the timing of each symbol to get at the
microstructure of the skill being learned.

On the basis of the observation from Experiment 1 that most
of a participant's time was spent planning the first symbol, we
split participants' time solving the problems of this experiment
into two categories: planning time and execution time. A
participant's planning time was the time spent before clicking
out the first symbol of a line, and execution time was the rest of
the time spent on that line. Figures 9 and 10 graph the

execution and planning time, respectively, that participants
spent on a per character basis on each type of problem, which
was broken into the three groups.

Concerning participants' execution time, there was no differ-
ence between the three groups, F(2, 33) = 0.09, MSE = 1.34,
p > .1. Participants did spend differing amounts of time
executing the different problem types, F(2, 66) = 40.18,
MSE = 0.12, p < .01, and got faster as they went through the
experiment, F(7,231) = 75.97, MSE = 0.14,p < .01. A multiple-
comparison test showed that one- and two-step problems did
not differ, but both differed from three-step problems. This
could be interpreted as some planning time seeping into the
execution time (or alternatively, it could amount to some
concurrency of the two processes). There were also significant
interactions between problem block and group, F(14, 231) =
2.00, MSE = 0.14, p < .05, and problem block, group, and
number of steps F(28, 462) = 2.36, MSE = 0.06, p < .001.
These interactions could be interpreted as participants taking
longer when they have to skip steps, particularly for three-step

588 BLESSING AND ANDERSON

1-Step problems (+X = A + B)

, 2-

1-

SWp Immediately

Skip After 24

Skip After 96

4 5
Blocks of 24 Trials

2-Step problems (X + A

2-

I,:

Skip Immediately

Skip After 24

Skip After 96

1 2 4 5 6
Blocks of 24 Trials

3-Sfep problems

, 2-

l -

Skip Immediately

Skip After 24

Skip After 96

1 2 3 4 5 6 7
Blocks of 24 Trials

Figure 9. Execution time by block for each problem type (Experiment 2).

problems at the beginning of the experiment. No other
interactions were significant.

Looking at planning time, a significant difference was
detected between the groups, F(2, 33) = 4.22, MSE = 32.77,
p < .05. As in execution time, participants also differed in
planning the different problem types, F(2,66) = 41.85, MSE =
4.88, p < .01, and got faster at planning as they went through
the experiment, F(7, 231) = 41.52, MSE = 2.70, p < .01. All
interactions in planning time were highly significant—group by
number of steps, F(4, 66) = 14.42, MSE = 4.88, p < .001,
group by problem block, ̂ (14, 231) = 34.42, MSE = 2.70, p <
.001—number of steps by problem block, F(14, 462) = 13.43,

MSE = 1.67, p < .001, and group by problem block by number
of steps, F(28,462) = 18.46,MSE = 1.67,p < .001. All of these
can be interpreted as participants being slowed when they first
have to skip steps, particularly in the three-step condition. This
increase in planning time is evidence for covert execution of
the steps that participants were now being asked to skip
overtly. The participants who started skipping steps after 24
problems had longer latencies, in comparison to the group who
skipped steps immediately, during the first block of trials in
which they skipped steps, but in the next block of trials they
were performing the same. Looking closer at the planning time
for the three-step problems solved in the last 96 problems, the

STEP SKIPPING 589

1-Step problems (+X*A + B)
15n

10-

5-

SWp Immediately

Skip After 24

Skip After 96

4 5
Blocks of 24 Trials

2-Step problems (X + A = B)

10-

5-

Skip Immediately

Skip After 24

Skip After 96

4 5
Blocks of 24 Trials

3-Step problems (+X + A = B)

10-

5-

Skip Immediately

Skip After 24

Skip After 96

1 2 3 4 5 6 7

Blocks of 24 Trials

Figure 10. Planning time by block for each problem type (Experiment 2).

times were significantly different from one another, F(2,33) =
3.52, MSE = 11.96,p < .05. The line in Figure 10 representing
the group of participants who did not skip steps until after
Problem 96 is significantly different from the lines representing
the other two groups by a Duncan multiple range test (p < .05),
meaning that these participants never reached the perfor-
mance level of the other two groups.

One of the striking results in Figure 10 is that, particularly
for participants who skipped immediately, the differences in
planning time among the one-, two-, and three-step problems
disappeared over the course of the experiment. In the first
block of 24 trials these participants were averaging 8.01,10.78,
and 12.52 s for the one-, two-, and three-step problems,

respectively, whereas at the end of the experiment they
averaged 3.23, 3.45, and 3.88 s, respectively.2 It seems that,
while participants were going through multiple transforma-
tions in planning these steps initially, or overtly skipping steps,

2 The comparable means for the first block of data from the other
two groups were 8.38, 6.18, and 7.49 for the participants who started
skipping after Problem 24 and 8.93, 6.34, and 7.49 for the participants
who started skipping after Problem 96. The comparable means for the
last block of data from the other two groups were 3.46, 3.02, and 4.13
for the participants who started skipping after Problem 24 and 3.62,
3.25, and S.02 for the participants who started skipping after Problem
96.

590 BLESSING AND ANDERSON

they wound up planning all steps as single transformations, or
covertly skipping steps. Protocols collected from 6 additional
participants; 2 in each of the three groups, confirmed such a
hypothesis. Like participants in Experiment 1, once they had to
start overtly skipping steps, they went through each individual
step mentally before clicking out the final line. After they had
experience doing this, their protocols suggested, such as
through the use of the shortcut mentioned previously, that they
began to mentally skip steps as well.

We fit a simple mathematical model to the planning and
execution times to more fully explain these findings. It assumes
that planning of single steps and execution of steps speed up
from the beginning of the experiment according to a power
function. As in the final model fit in Table 4, we assumed
separate parameters for a, b, and c for execution and planning,
but these were constant across problem types (and as in Table
4, these constraints have the same implications). The model
for execution and one-step planning is simply

a + bNc, (1)

where N is the number of blocks. However, the model is more
complex in the case of planning multiple transformations. The
model assumes that when participants are first asked to do a
multistep problem in a single step they mentally go through all
of the steps. That is, at first they are only overtly skipping but
are covertly still planning each line. However, each time that
they do so there is a probability of forming a collapsed
operator that will do it in a single step (and therefore covertly
skipping as well). Thus, if a participant has been required to
solve a two- or three-step problem in a single step M times,
then the probability of still planning it in three steps is PM and
the probability of mentally planning it in one step is 1 — PM,
where P is the probability of not collapsing a step. The latency
for both planning and execution time is described by

a + (no. of steps)*?" bNc + (1 - PM)b\fc, (2)

where N is the total number of blocks, and M is the number of
blocks in which the participant had to skip steps. The best
fitting parameters, found by minimizing the sum-squared
error, are displayed in Table 6. The overall R2 for this model
was .941. Figure 11 presents the planning predictions, which is
to be compared with Figure 10. Note that the model predicts a
longer planning time when required to start skipping steps, just
as the participants actually did. We estimated two values of P
for this model: .963 for two-step problems and .992 for

Table 6
Best Fitting Parameters for Planning and Execution
Time (Experiment 2)

Time

Execution
Planning

a

0.90
2.35

Parameter

b

2.60
15.13

c

-0.337
-0.495

Note. Pi = .963 represents value for the two-step problem; Pj = .992
represents value for the three-step problem.

three-step problems. This difference between the P values
corresponds to the relatively less difficulty participants had in
adapting to the skipping instructions for two-step problems.
There are at least two possible factors to point to in understand-
ing this difference. First, participants only have to compose two
steps rather than three. Second, the two-step composition
seems more natural in that it is very like algebraic movement
rules and skips over an intermediate step.

General Discussion

Taken together, these two experiments provided a close
examination of the step-skipping process, both overt step
skipping and covert step skipping. The results of Experiment 1
supply a qualitative overview of how people begin to skip steps
when left essentially on their own to learn how to solve
problems. At first, the participants made all of the intermedi-
ate steps explicit. That is, they would apply the one necessary
rule to the current line to arrive at the next line of the
problem's solution. Only after participants applied each rule at
least a couple of times did they begin overtly skipping that rule,
and only later covertly skipping the rule. It was almost never
the case that participants skipped a rule on the first opportu-
nity they had to apply it. However, Experiment 2 indicated that
overt skipping was a somewhat arbitrary choice on the partici-
pant's part, and they were capable of skipping right away. The
experiment also indicated that their decision to skip brought a
substantial reduction in total time due to the reduced execu-
tion time. Participants were still covertly planning each step,
and it took longer for these covert planning steps to disappear.
However, there was little evidence for multistep planning after
the 192 trials.

The results of Experiment 1 demonstrate that even though
participants showed an overall continuous improvement in
performance (Figure 2), and the performance was consistent
with the power law of learning, this masked large qualitative
differences, such as step skipping (Figure 3). However, in
Experiment 2, in which we controlled when participants were
allowed to skip steps, discontinuities were observed (Figure 8).
The separate parts of the discontinuities, though, were well fit
by a power curve. Moreover, the clicking of individual symbols
still followed a power law across the course of the experiments.
Thus, it seems that the power law of learning is preserved at a
more microscopic level.

It could be argued that discontinuities would not be ob-
served when participants are not forced to skip steps, as in
Experiment 1, because the two strategies (to skip or not to skip
steps) are in competition with one another, as in a race model,
and the faster of the two controls performance. When skipping
steps becomes faster than not skipping steps, then that will be
what the person does, without a discontinuity in performance.

Although other formalizations of how participants represent
transformations are possible, we consider here and in the
model to follow a production system framework. An important
issue raised in these experiments was the grain size at which
the participants represent these rules as productions. Partici-
pants could break up a rule into multiple productions for
transforming individual characters, or they could have a single
production rule that transformed a whole line mentally fol-

STEP SKIPPING 591

1-Step problems (+X =

10-

5-

Skip Immediately

Skip After 24

Skip After 96

4 5
Blocks of 24 Trials

2-Step problems (X + A = B)

15-,

10-

5-

Skip Immediately

Skip After 24

Skip After 96

3 4 5
Blocks of 24 Trials

3-Step problems (+X + A

15-,

10-

5-

Skip Immediately

Skip After 24

Skip After 96

l 2 3 4 5 6 7 8
Blocks of 24 Trials

Figure 11. Predicted planning time by block for each problem type (Experiment 2).

lowed by a series of execution productions that clicked out
each character. Evidence from these two experiments favors
the latter possibility—that is, planning productions that apply
at the line level. The longest latency for a line is before the first
keystroke. This would be the time for the productions to fire
that planned the line to be clicked. The time between all of the
other keystrokes varied only a little as a function of condition.
Once the production matches and fires, the next line is then
ready to be clicked out, which would be handled by a set of
execution productions that click out individual characters.
While participants' planning time was greatly increased when
they were instructed to skip steps, their execution times were
almost unaffected.

An ACT-R Model

We developed an ACT-R model (Anderson, 1993) that
captures the important qualitative aspects of people perform-
ing this task (in particular, the processes discussed in Experi-
ment l's Discussion section). Appendix C contains a more
detailed account of the model, particularly of the analogy
mechanism. An important distinction within the ACT-R
architecture is between declarative knowledge, one's knowl-
edge of facts (e.g., Washington DC is the capital of the United
States), and procedural knowledge, one's knowledge of how to
perform actions (e.g., adding numbers together). One of the
claims of the ACT-R theory is that all knowledge has declara-

592 BLESSING AND ANDERSON

tive origins. That is, the only way new procedural knowledge,
in the form of production rules, enters the system is by the
process of analogizing to some previous declarative knowl-
edge. This mechanism operates by forming an analogy from
examples stored in declarative memory to the current goal.

The model of our task within ACT-R (Anderson, 1993),
therefore, makes use of analogy to examples and creates
production rules as a result of the analogy process (either the
ones that do the original one-step transformations or the later
ones that skip steps). This fits in nicely with the participants'
behaviors because in the early stages of performing the task,
they would refer to the rule screens and look specifically at the
example at the bottom of the screen. Also, participants would
try to recall what they did last time when faced with a similar
configuration of symbols. Thus, participants were relying on
examples to start out with, just as ACT-R predicts.

In formulating this model, and in keeping with the analyses
previously presented, we made the assumption that each step
in a problem's solution could be conceived of as the applica-
tion of essentially two kinds of operators: those that planned
the step and those that executed the step. Whereas there
would be different operators for planning different lines, which
would roughly correspond to the rules on the rule cards, the
system would use the same set of execution operators for each
step. That is, an operator would decide what string of symbols
to output for the next step (i.e., what rule to apply), and a set of
execution operators would produce that string. Our model
concerned itself with the planning operators.

To begin the simulation, the model has some examples
available to it, such as those found at the bottom of the rule
screens as well as some other declarative knowledge about the
operators and operands involved. To illustrate how ACT-R
(Anderson, 1993) proceeds, suppose that for its current goal it
has been encoded to solve the problem x+A = B. It has no
productions that apply. However, one of the examples that it
has, that the next line after * * C = D i s * * C/C = D/C, is
similar to that of the current problem. It also has the
knowledge that / is the inverse operator of * and that — is the
inverse operator of +. On the basis of that knowledge and the
example given, the ACT-R analogy mechanism produces the
following production (P):

IF the current goal is an equation of the form: (PI)
x opl CON 1 =CON2
and op2 is the inverse oiopl,

THEN the next step should be
x opl CONlop2 CON1 = CON2 op2 CON1.

Some of the mapping that the analogy mechanism does is
relatively easy (e.g., the* in the first line goes with the* in the
second line), but it does infer (by tracing through the working
memory elements that contain *) that the / appears because of
the knowledge that / is the inverse of *. After this production is
constructed, it applies to the current goal to produce the result
x+A-A=B-A. This result becomes the new goal.

Again, no productions apply to this new goal. However, the
model has another example available to it, that the line that
follows x * C/C = DIC is x = D/C. Similar to last time, with
this example and its other knowledge, the analogy mechanism

creates this production

IF the current goal is an equation of the form:
x opl CON1 op2 CON1 = C0N2 op2 CON1
and op2 is the inverse oiopl,

THEN the next step should be
x C0N2 op2 CON1.

(P2)

After firing, this production creates the final result,* = B — A.
The model now has two productions that transform lines and a
complete, worked-out solution of the form

x+A =B

x+A -A =B -A

Once a production has been created to do a step, the person
now has two bases for performing the task: either by reference
to the production or by analogy to an example. This competi-
tion between production and example will be a function of the
strength of the production and the activation of the example.
The production will acquire strength with practice and gradu-
ally come to dominate the competition. This is consistent with
the fact that in Experiment 1 participants did not stop
referring to examples after their first opportunity. Presumably,
this is because the resulting production was not yet strong
enough and needed to be recreated by further analogy.

Let us now consider what may happen when the simulation
is presented with a new, but similar, problem to solve (e.g.,
x/B - D). The simulation has one production that will apply,
Production 1, but its strength will be low. It also has two
declarative structures to which it can analogize: the original
example and the declarative trace left from solving the first
problem. The production's strength is low, and the activation
from the example of the previous problem will be high, so the
analogy mechanism will create a production that is identical to
Production 1. This identity will be noted, and instead of
creating a new production, the original production will gain
strength. A similar process will occur to solve the next, final
line of the problem.

The question now arises as to how the model will begin to
overtly skip steps (as the participants did in the first experi-
ment). Because it is quicker to solve problems by clicking out
fewer lines, it is advantageous to skip steps, but the cost is an
increased memory load because the person has to maintain a
declarative structure representing the current line while retriev-
ing and applying the next rule. Once participants, and the
model, have gained a familiarity with the declarative structures
that represent the task's problem space (or the experimenter
dictates that intermediate steps must now be skipped), instead
of clicking out intermediate steps, the intermediate steps can
be maintained in working memory and the appropriate rules
applied mentally (to decrease memory load) and some steps
would be skipped. This corresponds to only overt step skip-
ping. That is, the model, like the participants when they started
to skip steps, still goes through the intermediate steps but does
not click them out.

Once steps are overtly skipped, the solver will see on the
screen a pair of lines with the step skipped and can store that

STEP SKIPPING 593

pair in declarative memory to be used to form an analogy. In
other words, once a solver or the model solves x/B = D by
mentally applying analogized productions similar to Produc-
tion 1 and Production 2 and clicking out only x = D * B, a
declarative structure will be formed linking x/B = D with its
solution, x = D * B. In that way, the system can analogize from
a current problem to that new fact and produce the following
production that skips a step:

IF the current goal is an equation of the form:
xoplCONl = CON2
and op2 is the inverse of op 1,

THEN the next step should be:
x = CON2 op2 CON1.

(P3)

Eventually, this production will accrue enough strength (by
being generated repeatedly by the analogy mechanism) that it
will be more powerful than the declarative examples. Once this
happens, the model, by executing this production, will be
covertly skipping steps.

In summary, all of the production rules start out by analogy
to examples. The examples are either the line transformations
on the rule screens or a line transformation it creates while
solving the problem. Once ACT-R starts overtly skipping
steps, it creates new examples of line transformations that
contain skipped steps from which it can learn new rules that
correspond to macrooperators. The new rules it learns gradu-
ally accrue strength and come to replace analogy to examples,
which corresponds to covertly skipping steps. It is important to
note that the rules created operate on whole lines and return
whole lines as their answer. This corresponds to the result in
both experiments that participants spent most of their time
before clicking out the first symbol and then a relatively similar
time clicking out the rest of the symbols of a line. That is, what
the participants apparently did, and what the ACT-R model
(Anderson, 1993) does, is to figure out what to do with the
entire line and then click out the result.

Conclusions

One question of interest is if any person noticed the
relationship between this task and algebra. This can be
addressed best with respect to the 12 participants in Experi-
ment 1 from whom protocols were obtained. Only 1 participant
in Experiment 1 reported being aware of the similarity be-
tween this task and algebra. Another participant after working
on 60 problems in Experiment 1 began to make a mapping
between the symbols in this task and algebraic symbols but did
not complete the mapping. When questioned after the experi-
ment, the participant reported thinking there was similarity
but did not believe the mapping was going to provide any help
in performing the task, so he abandoned it. Almost all
participants in both experiments, when questioned after their
participation, reported a similarity between this task and a
logic type of task. From this finding, it appears that partici-
pants were not directly using their knowledge of algebra to
perform the task.

This indirectly leads to the question of generality of these
findings. What kinds of tasks lead to the sort of step skipping
exhibited in the task used in these experiments? Step skipping

is not possible, or simply is not done, in all tasks. Counting and
simple addition represent two such tasks. A person counting
cannot skip objects to be counted.3 Children learning addition
go directly from using some counting strategy to direct re-
trieval of the example (Siegler, 1986); they do not go from
counting by ones to counting by twos to counting by fours.
Retrieval of the answer can be conceived as a special kind of
step skipping, but it is one that eliminates the algorithmic
nature of the process. In our case, we argue that participants
were not retrieving the final line but were still computing it
(see below for more detail). Certainly, the kinds of tasks that
support the type of step skipping discussed in this article are
typically formal, procedurally oriented domains, such as alge-
bra or physics. In such domains, steps are characterized by the
application of a rule to the current state of the problem to
reach the next meaningful state on the path to solution. Steps
can be skipped by simply skipping the intermediate steps
between the problem statement and its solution. This can be
done by recognizing any sort of pattern that may be contained
in the problem statements directly to reach the answer or some
other intermediate step. However, it is the case that other less
formal procedures support step skipping. For instance, stu-
dents who are learning to draw human figures do so by drawing
an oval for the head and then seven more for the other parts of
the body. They then put hash marks on the ovals to serve as
guides for such things as shoulders and hips. As the person
becomes a more expert drawer, they begin to skip the steps of
drawing certain ovals and the hash marks. This skipping of
steps coincides with a more intuitive understanding of how to
draw the human figure.

The ACT-R theory (Anderson, 1993) claims that any new
procedural knowledge comes from declarative knowledge in
the form of examples. The theory posits only a single mecha-
nism to account for both the learning of the original rules and
of the composed rules. Participants' behavior while performing
this task is consistent with such a view (in how they referred to
the examples and by their protocols), and an ACT-R simula-
tion was created that modeled many of the important aspects
of participant's performance. That is, both the participants and
the model initially did each step in the solution procedure
(when left on their own, as in Experiment 1) before skipping steps.
In doing each individual step, the participants and model formed
an analogy from an existing example to the current problem. When
beginning to skip steps, they were most likely applying each
separate operator mentally in order to skip a step. After noticing
the relationship between these new pairs of lines, though, they
formed by analogy a new, single operator that skips steps.

The other theories of skill acquisition also can be examined
in light of these results. The rule composition view might seem
to have the same problem with these data that Lewis (1981)
raised. That is, people are composing together the planning
steps, but these are not adjacent—for instance, the double
reversals of the operators are separated at least by execution

3 Subitizing (Chi & Klahr, 1975) could perhaps be construed as a
case of skipping steps while counting, and indeed, people can be
trained to enumerate recognized, repeated patterns (Lassaline &
Logan, 1993). However, subitizing does not have the flavor of collaps-
ing a sequence of different procedures into a single operation.

594 BLESSING AND ANDERSON

steps. However, the model we described proposed that people
consciously reorganized their problem solving so that they
went through a series of planning steps mentally before
executing the results. Then the planning steps would be
adjacent and composition could produce macrooperators. The
remaining difficulty for the composition theory is that it does
not deal with the original learning of the operators and the
evidence for participant's reliance on examples.

Logan's (1988, 1990) instance theory as it is currently
realized cannot adequately account for these data because at
most only one or two examples were ever repeated for a
participant, yet his or her performance still improved over the
course of the experiment. Furthermore, once participants
started to produce x = B — A fromx + A = B, they also would
produce* = C* D fromx AD = C. That is, once they started to
do single transformations in one step, they would do so for all
operators. This generalization phenomenon poses a major
problem to Logan's (1988,1990) theory.

Modifications to instance theory could perhaps be made to
explain the data in these experiments. For example, the
generalization problem mentioned above could perhaps be
solved by making the instances used by the problem solver
smaller grained. That is, instead of using whole problems, or
even whole lines, an instance could be only part of a line (an
operator-operand pair perhaps). In that way, these instances
could be pieced together by multiple retrievals to form a whole
line. However, if that were the case, one would not expect to
see the relatively large up-front planning time that was seen in
these experiments. Rather, the expectation would be more
consistent intercharacter times as the smaller grained in-
stances were recalled. Another potential way to mend instance
theory would be to allow instances to accept variables and thus
allow nonexact retrieval matching to occur. This is perhaps a
better solution, but it would seem to be basically introducing
production rules into the theory, which would take away its
distinct character. Moreover, in addressing the question of
how such instances are variabilized, one comes against the
same issues that ACT-R's (Anderson, 1993) analogy mecha-
nism was designed to solve.

In these experiments we have examined closely the power
law of learning. At a gross level, as in Figure 2 from Experi-
ment 1, our results were fit quite nicely by a power law.
However, as we looked more deeply at people's performance
at learning our task, we found discrete qualitative changes.
Because these changes occurred at different points for differ-
ent participants, the average result looked like a continuous
power function. When we controlled the point of these
qualitative changes (Experiment 2), we noticed discontinuities
in the power law in terms of overall time. However, when we
decomposed this overall time into its components, we found
that these components still obeyed a power law. In summary,
time to perform a complex task approximates a power law
because its components do, and qualitative changes in these
components are typically masked by averaging procedures.

References

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA:
Harvard University Press.

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.
Anderson, J. R., & Fincham, J. M. (1994). Acquisition of procedural

skills from examples. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 20, 1322-1340.

Carlson, R. A., & Lundy, D. H. (1992). Consistency and restructuring
in learning cognitive procedural sequences. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 18, 127-141.

Charness, N., & Campbell, J. I. D. (1988). Acquiring skill at mental
calculation in adulthood: A task decomposition./ouma/ of Experimen-
tal Psychology: General, 117, 115-129.

Chi, M. T. H., & Klahr, D. (1975). Span and rate of apprehension in
children and adults. Journal of Experimental Child Psychology, 19,
434-439.

Ericsson, K. A., & Simon, H. A. (1990). Protocol analysis: Verbal reports
as data. Cambridge, MA: MIT Press.

Frensch, P. A. (1991). Transfer of composed knowledge in a multistep
serial task. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 17, 997-1016.

Frensch, P. A., & Geary, D. C. (1993). Effects of practice on
component processes in complex mental addition./ouma/o/Experi-
mental Psychology: Learning, Memory, and Cognition, 19, 433-456.

HyperCard 2.1 [Computer software]. (1991). Cupertino, CA: Apple
Computer.

Koedinger, K. R., & Anderson, J. R. (1990). Abstract planning and
perceptual chunks: Elements of expertise in geometry. Cognitive
Science, 14(4), 511-550.

Lassaline, M. E., & Logan, G. D. (1993). Memory-based automaticity
in the discrimination of visual numerosity. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 19, 561-581.

Lewis, C. H. (1978). Production system models of practice effects.
Dissertation Abstracts International, 39, 5105B. (University Micro-
films No. 79-07,120).

Lewis, C. H. (1981). Skill in algebra. In J. R. Anderson (Ed.), Cognitive
skills and their acquisition (pp. 85-110). Hillsdale, NJ: Erlbaum.

Logan, G. D. (1988). Toward an instance theory of automatization.
Psychological Review, 95, 492-527.

Logan, G. D. (1990). Repetition priming and automaticity: Common
underlying mechanisms? Cognitive Psychology, 22, 1-35.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA:
Harvard University Press.

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisi-
tion and the law of practice. In J. R. Anderson (Ed.), Cognitive skills
and their acquisition (pp. 1-55). Hillsdale, NJ: Erlbaum.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood
Cliffs, NJ: Prentice Hall.

Rosenbloom, P. S., & Newell, A. (1986). The chunking of goal
hierarchies: A generalized model of practice. In R. S. Michalski,
J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An
artificial intelligence approach (Vol. 2, pp. 123-140). Los Altos, CA:
Morgan Kaufmann.

Siegler, R. S. (1986). Unities in strategy choices across domains. In M.
Perlmutter (Ed.), Minnesota Symposium on Child Development. (Vol.
19, pp. 1^8). Hillsdale, NJ: Erlbaum.

STEP SKIPPING

Appendix A

Rules Used in Experiment 1

595

For Rules 2-5, participants were told that X represents any of the
operand symbols, A, T, ft, 4> (in the experiment they were called object
symbols), and that the goal of each problem was to "isolate" the &> on
the left-hand side of the «-».

R u l e l

This rule allows you to take any connector symbol (c, ®, # , ¥) plus any
object symbol (A, T, ft, <t>) and add them to both the left-hand side and
the right-hand side of any character string. For example, if the current
line was:

You could add °4> to both sides to get:

Suppose the current line was V^5*A«-»#fl and you wanted to use
Rule 1 with V A for the next line. That line would look like:

Rule 2

Schematically, Rule 2 states:
The current line (on one side) contains: [.. .]#X[. . .]CX
You may write: [...][...]

So, for Rule 2 to apply, the character string must contain the connector
and some object symbol together, and then the connector ° and that
same object symbol later on in the character string, but still on the
same side.

To illustrate:
The current string is: &> # AcA*-»®ftc A
You may rewrite it as: 3s <-*®ft«>A

Rule 3

Schematically, Rule 3 states:
The current line (on one side) contains: [.. .]CX[.. .]#X
You may write: [...][...]

For Rule 3 to apply, the character string must contain the connector °
and some object symbol together, and then the connector # and that
same object symbol later on in the character string, but still on the
same side (either the right-hand side or the left-hand side).

As an example:
The current string is:
You may rewrite it as: >• ¥*#ft

Rule 4

Rule 4 states
The current line (on one side) contains: [.. .]®X[...]¥X
You may write: [...][...]

To apply Rule 4, the character string must contain the connector * and
some object symbol together, and then the connector ¥ and that same
object symbol later on in the character string, but still on the same side
(either the right-hand side or the left-hand side).

For example:
The current string is: & ®A¥ A*-»¥*¥A
You may rewrite it as: 3s «-» ¥<1>¥A

Rule 5

Rule 5 states:
The current line (on one side) contains: [...] ¥ X [. . .]®X
You may write: [...][...]

To apply Rule 5, the character string must contain the connector ¥
and some object symbol together, and then the connector • and that
same object symbol later on in the character string, but still on the
same side (either the right-hand side or the left-hand side).

For example:
The current string is: #&> ¥**«-»#ft«*
You may rewrite it as: # 5 S **#ft*4>

Rule 6

Once you have used the preceding four rules to eliminate all but the
3° symbol and its connector from the left-hand side, these next four
rules will allow you to get rid of that connector and thus correctly
transform the character string.

When the left-hand side contains only *&, in the next line you write
you may eliminate the * from the left-hand side, and leave the
right-hand side exactly the same.

As an example:
Current line: *& «-»<WA
Your next line: 3s «->«>n®A

Rule 7

Rule 7 is somewhat similar to Rule 6, in that when the left-hand side
contains only #&>, in the next line you write you may eliminate the #
from the left-hand side and leave the right-hand side exactly the same.

As an example:
Current line: #& « • • * ¥ r»ft
Your next line: 3* **®4> Vr°ft

Rule 8

When the left-hand side contains only ¥ . 3 ' , in the next line you write
you may eliminate the ¥ from the left-hand side, but then change any
occurrence of ® in the right-hand side to V, and any occurrence of V
to ®, leaving the other symbols alone.

To illustrate:
Current line: ¥ 3° «-»®ft#r
Your next line: & «-»¥ft#r

(Appendixes continue on next page)

596 BLESSING AND ANDERSON

Rule 9

Rule 9 is somewhat more complicated. When the left-hand side
contains only ®3*>, in the next line you write you may eliminate the c

from the left-hand side. If a ° appears on the right-hand side, then you
may rewrite the right-hand side, swapping the positions of the two
symbols on either side of the c . When the right-hand side does not
contain a c connector symbol, you may simply rewrite the right-hand
side, but putting a c first.

As examples of this rule:

Current line: °3
Your next line: 3s «

But:
Current line: ®3* <-»
Your next line: &

These last two rules are very important and provide a standard method
of attack for all problems.

Rule 10

Rule 10 states that you must eliminate all V and • connector symbols
from the left-hand side before eliminating any # or e symbols.

Therefore, if the problem was #A®<l>V.5i'<->Vft, you would have to
eliminate the ®<J> before eliminating the #A.

Rule 11

Rule 11 states that you must eliminate the connector and object
symbols from the left-hand side in a left-to-right fashion. However,
Rule 10 has precedence over Rule 11. So if the current line was
^S#r**°n<-»V4>, you would need to eliminate the ®<J> (because of
Rule 10), then the # r before you eliminate the °il.

Appendix B

Sample Protocols From Experiment 1

Problem Protocol Commentary

Problem 1

i

i
1<

Problem 2

Sequence 1 (Participant 1)

Let's see, *, ®3" is equivalent to <*il, *il then let's see, •
has precedence so it's V4>cr.

(Computer: Good)
Good. And, ummm, uh, let's see, so which gives me 3"

equivalent to, uhh, let's see, ®fl, V<J>cr.

Okay, *3°, 3s equivalent to VT, uh, uh oh, Vr, just, I
can worry about that later, VT, VT, V<t>®ft.

The participant first skips two transformations, not wor-
rying about what is in front of the 3s. After that line
is checked, he then applies the rule that removes the
• in front of the 3*.

The participant apparently looks to see what symbol is in
front of the &>.

Problem 3
Um, 9>, nothing interesting in front of it, goes to 4>, let's

see, the V gets precedence, so it's ®A#F.
The participant is considering the symbol in front of the

3" first.

Problem 1

Problem 2

Problem 3

Sequence 2 (Participant 5)

Okay. Okay. I have to eliminate the ®s with a V, and that
V will turn into a ®ft, and then, that was supposed
to have been, that was supposed to have been a V,
okay. I'm not sure.. ..

Okay. Get rid of the Vs first with a ®, and then to get rid
of the Vs, you would change the Vs to ®s. So I think
I can do this on one line. This is that, and then I'll
have to put, $, but it will just be V$.

Okay. Umm, I have to swap the ®s and Vs. So the
original was that, goes to that, and this would stay as
it is.

First three-step problem done all in one line. The partici-
pant does all the steps in his head, first recalling the
elimination rule, and then the rule concerning how
to remove the V in front of the 3s.

Again, a similar three-step problem has been done on
one line. He is faster and more sure of himself this
time. Notice he mentioned the ®<I> changing to a
V*.

However, this time, he says, "this [the ®F] would stay as it
is."

Problem 4

1
Okay. Change that, to a V. At the later problems, participants were very abbreviated

in their protocols.

Note. In the first column the problem (as it was presented to the participant) is shown. Below that (as directed by the arrows) is what the
participants clicked. The second column is the protocol that the participants produced while solving the problem. Participants developed their own
names for the symbols (e.g., "squiggle" or "alpha" for the 3"), but in the protocol we substituted the actual symbol. The commentary in the third
column explains the importance of the protocol.

STEP SKIPPING 597

Appendix C

The Adaptive Control of Thought—Rational (ACT-R) Model

This appendix elaborates on the ACT-R (Anderson, 1993) model,
which was presented in the article. Because of space constraints, we
focus on how the model composes, via the analogy mechanism, the
production that covertly skips steps. A more detailed model can be
found at the ACT-R World Wide Web site (http://sands.psy.cmu.edu/
ACT/act/act-code.html).

We assumed a flat representation for the character strings. That is,
the structure that contains the representation of a line is essentially
just a list of the symbols placed in their correct slots. This assumption
made it easier for the analogy mechanism, plus we had no real
intuition as to what sort of hierarchical representation the participants
actually used. In ACT-R (Anderson, 1993), our representation can be
characterized by the following statement (Ihs and rhs refer to the
left-hand side and the right-hand side of the equation, respectively, as
separated by the double arrow; var refers to variable; op refers to
operator; and con refers to constant):

(WMEType equation lhs-var lhs-opl lhs-conl Ihs-op2

Ihs-con2 rhs-conl rhs-opl rhs-con2 achieved-by).

This creates a new working memory element (WME) type called
equation, which has nine slots, one for each potential symbol, plus the
achieved-by slot, which is a special slot used by the analogy mechanism
telling the system the next step in a problem's solution. The only other
important WME type is the one that defines the operators, which is
denned by (WMEType operator reversed-by). Thus, these WMEs not
only have the name of the operator but also the operator's inverse
associated with them.

A problem can be expressed by the following WME:

(PROBLEM

ISA equation
LHS-VAR *
LHS-OP1 *
LHS-CON1 C
RHS-CON1D),

which is the problemX* C = D. Because the ACHIEVED-BY slot is
not listed, it is assumed to be nil. For the purpose of this appendix, it is
assumed that this problem is the current goal. Furthermore, the system
has already solved the problem X + A = B and has noted that the
answer isX = B — A. These can be expressed by

X + A = B

(SOLVEDPROBLEM1

ISA equation
LHS-VAR X
LHS-OP1 +
LHS-CON1/1
RHS-CON1B
ACHIEVED-BY SolvedProblem2)

and

X = B-A

(SOLVEDPROBLEM2

ISA equation

LHS-VAR X

RHS-CON1B

RHS-OP1 -

The other two WMEs that are important for this illustration are the
two that correspond to the operators used in the goal problem and
SolvedProbleml:

ISA operator

REVERSED-BY-)

and

ISA operator

REVERSED-BY /) .

When the system solved the first problem (X + A — B), it presum-
ably either already had the productions needed to solve the problem or
it had another example with which it analogized, which created two
productions: one for going from X + A =BtoX+A —A =B —A, and
another for going from X + A -A =B-AtoX = B-A. These
productions will be in competition with the analogy mechanism. If the
productions are weak, the system can analogize from the current
problem (X * C = D) to SolvedProbleml. This will result in the
following production, one that covertly skips steps:

(p ANALOGIZED-PRODUCTION127
Problem-Variable >

ISA
LHS-VAR
LHS-OP1
LHS-CON1
RHS-CON1

•-variable >
ISA
REVERSED-BY

equation
=X-variable
='-variable
=C-variable
=D-variable

operator
= /—variable

=Equation-Operator-Subgoal >
ISA equation
LHS-VAR =X-variable
RHS-CON1 =D^variable
RHS-OP2 =/-variable
RHS-CON2 =C-variable

! focus-on! = Equation-Operator-Subgoal)

(Appendix continues on next page)

598 BLESSING AND ANDERSON

The important thing to note about this production is that it found the
mapping between the multiplication sign and the division sign to
induce correctly how one goes fromX* C = D toX = D/C (the three
lines above the => in the production). The analogy mechanism does
this by finding the path from the + in the previously solved problem to
the WME that declares that the reverse operator of + is - , where - is
also used in the previously found problem. The other symbols can be
trivially mapped from their location in the problem statement to their
location in the problem's solution. The !focus-on! command sets the
newly created WME as the system's new goal.

Although the current simulation does not attempt to model the
latencies recorded in either of the experiments, the ACT-R (Ander-
son, 1993) theory does specify how such predictions would be made.

The latency of the analogy process is defined as the sum of the
latencies of the WMEs retrieved in the process, which include the
examples and the intermediate retrievals. The analogy process and the
instantiation of the production occur sequentially. Therefore, the
latency of the resulting instantiation is defined as the latency of the
analogy process plus the matching latency. More information regard-
ing how these latencies are computed, including the underlying
equations, can be found in Anderson (1993).

Received February 23,1995
Revision received June 15,1995

Accepted June 26,1995

Research Awards in Experimental Psychology

The Division of Experimental Psychology of the American Psychological Association (Divi-
sion 3) announces a continuing series of up to five annual research awards. These awards
are to be based on review of the research submitted to or published in the APA's Journals of
Experimental Psychology each year by relatively new investigators. The intention is to
provide early recognition to new scholars whose research contributions are especially prom-
ising. These awards are

Division of Experimental Psychology (Annual)
New Investigator Award in Experimental Psychology:
Animal Behavior Processes;

Division of Experimental .Psychology (Annual)
New Investigator Award in Experimental Psychology:
Human Perception and Performance;

Division of Experimental Psychology (Annual)
New Investigator Award in Experimental Psychology:
Learning, Memory, and Cognition;

Division of Experimental Psychology (Annual)
New Investigator Award in Experimental Psychology:
General;

and

Division of Experimental Psychology (Annual)
New Investigator Award in Experimental Psychology:
Applied.

These awards have been previously announced, and are given to the winners each year at
Division 3's business meeting held at the APA annual convention.

