
Abstract
Pro ducin g Int ellig ent Tutori ng Sy stems (ITSs) is a
lab or-in tensi ve process , req uirin g man y dif feren t
ski ll se ts. A majo r componen t of an ITS, th e cog ni-
tiv e mod el, h as hi stori cally requ ired not o nly cog-
nit ive s cience kno wledg e but also prog rammi ng
kno wledg e as well. The tools described in t his p a-
per were crea ted t o rel ieve this bottl eneck in p ro-
duc ing commercial-quali ty ITSs.1

1 Introduction
ITS s are comprised of many different parts: an i nterface,
a l earner-management system, the curri culum, a t eacher
report system, and a cogniti ve model. It is this last
piece, t he cogniti ve model, which enables t he tutor t o
provide help to the student, assi sting when the student
veers off track and staying out of the way when the s tu-
dent is doing the right thing. The focus of the work pre-
sented in thi s paper is the design and creation of tools
centered on the cogniti ve model of an ITS. More speci fi-
cal ly, we are interested in authoring cogni tive model s
appropri ate for model-t racing ITS s, where s tudent input
is checked on every student interaction.

Whi le there have been some great ITS successes (e.g.,
Anderson, et al., 1989, Koedinger et al., 1997, Graesser
et al., 2004, VanLehn et al ., 2005), their development is
a costly endeavor. Studies have shown that students who
use an ITS to learn can mast er the material in a third less
time (Corbett , 2001). In controll ed studies in school set-
tings, ITS-based curricula have been shown to be more
effective in preparing students for st andardized test s
(Morgan & Rit ter, 2002; also see
www.whatworks .ed.gov). However, estimates for the
creation of t he tutored material range to 100 hours per
hour of instruction or more (Murray, 1999). To this
point, even with t heir promises of drastically reducing
learning time, there have been few commerci al ITS suc-
cesses, due t o thi s development barrier. For ITS s to be-

This material is based upon work supported by the National Sci-
ence Foundation under Grant No. DMI-0441679.

come mainstream and realize their full potenti al, t he crea-
tion of authoring tools is critical.

The research into authoring tools for ITS s is still quit e
new (see Murray, B lessing, & Ainsworth, 2003 for a
review). In t he past ITS researchers have had to design
sys tems from scrat ch, using standard software develop-
ment packages to construct t he system. This requires not
only knowledge of cogni tive science in order to creat e the
cognitive model, but al so a fair amount of programming
knowledge. Coupled with the domain knowledge re-
qui rements, any si zable ITS system requires a team of
des igners, each wi th a different skill set. Whil e such
team des ign processes are essenti al, t he interdependence
of the t eam can result in bottlenecks. If t he cogniti ve
sci entis t requires programming assistance i n order to get
a piece of work done, t his s lows down the effort . The
goal we have for t his project, which we feel is plaus ible,
is not t o enable an individual to create a whole ITS, but
rather t o bet ter assist the person taking on a particular
rol e to do hi s or her j ob better and more effici ently . A
person who desires to create a tutor for a parti cular do-
main (be it a cognitive scientist or perhaps even a master
teacher) should not be requi red to be a programmer to
make substant ial progress in creating the basics of t he
cognitive model.

The main chal lenge in t his work i s coming up with
representations that enable the cognit ive model designer
to do their work without any programming and with a
clarity not offered by present systems . Furthermore, this
sys tem i s to be used in the context of creating and main-
taining cogni tive model s in commercial ly available tu-
tors. This work complements the research of Koedinger
and his colleagues (2004), who are investigating other
ways in which non-programmers can create cogniti ve
models for model-t racing tutors. The C ognit ive Tutors
created by Carnegie Learning are in use in over 800
schools across the Unit ed St ates and by hundreds of
thousands of students. This places additional require-
ments on the tools with regards t o robustness, maintain-
abi lity, and integration within a QA process .

In our conceptuali zation, the two main component s of
a model-tracing ITS cogni tive model are the object
model and the rule hierarchy. The object model repre-
sents the pieces of the domain to be t utored, and thi s

Developing an Authoring System for Cognitive Models
within Commercial–Quality ITSs

Stephen Bless ing Stephen Gilbert Steven Ritter
Dep artment of Psycholog y

Uni versi ty of Tamp a
401 W. Kenned y Blv d., Box Q

Tampa, FL 33 606 USA
sbl essin g@ut.edu

Clearsig hted
232 5 Van Buren Ave .
Ames, IA 500 10 USA

stephen@clearsight ed.org

Carnegie Learning, Inc.
120 0 Pen n Avenue, Ste. 200

Pit tsburgh, PA USA
sri tter@carnegielearnin g.com

497

object model is used by the rules to provide the tutoring
to the s tudent. In the tradi tional approach to authoring
model-tracing tutors (e.g., Anderson & Pell etier, 1991),
working memory elements correspond to the object
model and a flat representat ion of production rules corre-
spond to our rule hierarchy. The parti culars of the i nter-
nal architecture used by us, referred to the as the Tutor
Runtime Engine (or TRE), has been described elsewhere
(Ri tter, Blessing, & Wheeler, 2003). A set of tools has
been created that work on top of this archi tecture to pro-
vide a software development kit (SDK) for cognit ive
models, and the purpose of t his articl e is to describe the
main pieces of thi s cognitive model SDK. The plan be-
hind the SDK is to apply concepts that have been suc-
cessful in other aspect s of computer applications, such as
tree views, hierarchies , and point-and-click int erfaces, t o
the design of model-tracing ITS s. Development of such
representations so they are usable by non-programmers in
thi s context is di fficult (t o dat e, few ITS syst ems have
employed them; the VIVIDS system, Munro et al., 1996,
is an exception that has inspired part of t he present
work), but critical to lowering the bar in terms of both
time and money in the creation of such syst ems. While
nothing is automated yet, these t ools provide much more
support and s tructure for creating a cognit ive model than
what exi sted before (which for Cogniti ve Tutor Algebra I
was essential ly a blank document page).

2 Object Model
One of t he main components of a cognit ive model is the
declarat ive s tructure used to refer to the objects and their
properti es wi thin the domain being tutored. As such, a
main issue was the creation of such a tool appropriat e for
a C ognit ive Tutor. Traditionally this had been accom-
pli shed via code, requi ring both programming and cogni-

tive sci ence knowledge. The main accomplishment here
is in lowering the bar so that no programming knowledge
is requi red. Moving to more of an object-oriented, object
hierarchy based vi ew is the key to cos t efficiency in creat-
ing ITS s, both in terms of initi al development and in on-
going maintenance.

A main concern in the design of not only this tool,
but also all of the tools that comprise the syst em, i s that
it support the viewing and editing of the existi ng cogni-
tive models t hat have been produced by Carnegie Learn-
ing. Thi s would ensure that the t ools were of suffici ent
value to produce commercial-quali ty cogniti ve models.
To this end, all t ools described here meet that goal.

The requirements for this particular t ool are similar to
other existing tools (e.g., Protégé, an open-sourced on-
tology editor developed at S tanford Univers ity), in t hat
the basi c functionality is t o display and edit object s con-
sis ting of at tribute/value pairs. However, there are addi-
tional requirement s for Cognitive Tutors that makes us-
ing any off-t he-shelf or previous ly produced software
problematic. In particular, pre-defined object t ypes exist
that have their own properti es and behaviors. For exam-
ple there is a Goalnode object type (representing a s tu-
dent’s subgoal in the problem), that has a set of prede-
fined propert ies, and attached to these Goalnode types is
a predicate t ree i nspector (the subject of the other main
tool, representing the rule hierarchy). Also, the values of
all properties are typed, and thi s has impl icati ons for
other aspects of t he system in particular (e.g., the use of
Tutorscript, a topic to be discussed l ater).

Figure 1 shows the design of the tool. The left pane of
that des ign shows the currently l oaded object hi erarchy
(including objects and properties) and the right pane
shows information about the currently selected i tem in
the left pane. There are provisions for adding, moving,

Figure 1. Object Model Editor.

498

and deleting objects and properti es, as wel l as maint ain-
ing other aspects of the tree.

The final, working vers ion follows qui te closely from
thi s des ign. The full object hierarchy for Carnegie Learn-
ing’s existing algebra and middle school math tutors can
be viewed and edit ed us ing this t ool (consi sting of ap-
proximately 85 objects with 365 properties). In the past,
these hi erarchies were viewable only i n a s tandard code
window, and the definit ion of the various object s and
properti es were often scattered across pages of code and
contained in several fi les. In addition, object hierarchies
for other tutors have been entered using this tool. The
superior visualization offered by the Object Model Editor
has encouraged more code-sharing between di fferent tu-
tors, and has helped to identify and correct ineffici encies
in the representat ion of obj ects. We feel t hat using this

tool to enter, edi t, and maintain object hi erarchies for
Cognitive Tutors i s a clear win for the des ign of the ob-
ject model of an ITS cogniti ve model. It has enabled us
to find inefficiencies within exi sting code and to al low
non-cognitive scientist s to creat e cognitive models .

3 Rule Hierarchy
In addit ion to the object model, the other main piece of a
cognitive model specifi es the goal-state behaviors, such
as right answers, hints , and just -in-t ime-messages—the
backbone of a model-tracing tutor. The task is t o des ign
an editor for these rul es, hints, and actions. As previ-
ous ly st ated, one goal was t hat t he vi ewer needed to dis-
play the exis ting rule sets that Carnegie Learning has
developed (as a reference, C arnegie Learning’s Algebra I
cognit ive model has approximately 500 rul es).

Figure 2. Predicate Tree Schematic.

Figure 3. Predicate Tree Inspector.

499

Again, t he main challenge is to come up with a repre-
sentation that is natural and understandable by non-
programmers. Like with the object model, the traditional
method of creating these rul es was through code. How-
ever, we developed a non-code based representati onal
scheme for these rules. The rules used by the cogniti ve
modeling syst em share some features in common wi th
the EPAM syst em (S imon & Feigenbaum, 1984), in t hat
the predicates for the rules form a hi erarchical tree, with
most of the actions appearing at the l eaf nodes. The
nodes contain the tests (predicat es) used to det ermine the
behavior of t he system. This behavior is di ctated by how
properti es of the problem are coded in the object hierar-
chy and the subsequent actions of the student.

Figure 2 shows a schematic diagram of one of one of
these trees. Each tree is particular t o one type of goal
state, and so the tests apply only to that goal state. For
example, one test, or predicate, within the algebra cogni-
tive model is if t he cell-type (a property) of a worksheet -
cel l (a goalnode) is “expression.” Later predi cates within
the tree test whether t he express ion cell i s of the form
“mx” or “mx+ b”. These properties are determined when
the problem i s authored. As seen in the schemati c, the
cognitive model is structured around these kinds of
predicat es. When a given predicate is sati sfied, the stu-
dent may see hints or “JITs” (j ust-i n-time feedback mes-
sages). However, not all propert ies t hat are important for
tutoring can be determined at authoring time, so some
properti es must wait until t he student is i n the mids t of
solving the problem, or at runtime. In the diagram, “RC”
notates a Runtime Condi tion and “SIRC” notates a Stu-
dent Input Runtime Condition. A R untime Condition
might, for example, specify that the hint t o be given de-
pends on whether t he student has already complet ed part
of the problem. A just-in-time message is t riggered by
SIR Cs, because they depend on what the student entered.

Figure 3 shows the design for thi s Predicat e Tree In-
spector. The upper left pane of t he design shows the
predicat e tree hierarchy for a particular goalnode. The
upper ri ght pane shows the full set of predicate test s for
the selected node at the left, and the lower right pane
shows the hints, j ust-i n-time messages , and other tutor-
ing actions attached at this node. Finally, the lower left
pane shows the Act ion C atalog, to be used for repeated
tutoring actions within a tree. As des ired, the Predi cate
Tree Inspector has the funct ional ity t o view all the rules
and all their part s that comprise Carnegie Learning’s Al-
gebra I cogni tive model .

3 .1 Rule Edito r
As shown in F igure 2, t he nodes contain one or more
predicat es that test certain aspects of the current s tate of
the problem. This is akin to a typical production that
contains working memory test s in a rul e-based system.

As with the Object Model edi tor, the challenge here i s to
make such a representat ion unders tandable and usable by
a non-programmer. The original Algebra I rules were
bui lt us ing a toolkit constructed on top of Common Li sp
(the Tutor Development Kit, Anderson & Pell etier,
1991). While usable for simple tutors by non-Lisp pro-
grammers , the TDK still had a deep learning curve.

What is requi red i s a system that lays bare what is
needed to produce statements such as “give this help
message when the s tudent is in an expression cel l of the
form mx+ b and the problem involves money” and “pro-
vide thi s jus t-in-time help message if the student enters
an expression but leaves off the intercept. ” In addit ion to
providing an intui tive way to ent er such express ions
when required, the interface needs to guide the author in
creating the syntax for each part of t he predicate and pro-
vide templates for entering help, just -in-t ime-messages,
and the other acti ons t hat can be performed by the tutor.

Figure 4. Rule Editor .
The language that is used in these predicat es and in

other parts of the SDK to refer t o a working memory
state is call ed Tutorscript. We modeled this scripting
language on those found in other object-ori ented envi-
ronments (e.g ., Applescript i n the Macintosh operating
sys tem). It provides an Engl ish-l ike way for non-
programmer authors to refer to the needed aspect s of the
problem state within the rul e system.

3 .2 Tuto rscript Edito r
Tutorscript provides a way for the author t o refer to the
object hierarchy within the const raint s of the rules used
by the cognit ive model. Therefore, it is used not only in
the predicates used within t he rules, but also i n the hint
and just -in-t ime message templates, as well as other as-
pects of the authoring system. In addi tion to providing a
way for authors to refer to properties within the obj ect
model, t he syntax of Tutorscript also provides simple
if/ then clauses, arithmetic, and formatted output.

500

The only provision within the older authoring tools
for Tutorscript was for the author to type out the refer-
ence. This pl aced a burden on the author to remember the
syntax and the route through object space t o reach the
des ired property. This added greatly t o the programming
aspect of what should be a cognit ive modeling task.

Des igning a Tutorscript editor is a chal lenge because a
Tutorscript phrase is read from l eft t o right, but is more
properly cons truct ed from right t o left. A piece of Tutor-
script l ike displayed in Figure 5, “it em n of columns of
worksheet of problem of tutor [of label-node]” s tarts with
all the properties accessibl e from the goalnode label-
node, of which tutor is one. The tutor property itself
resolves to an object which has certain properti es, of
which problem is one. The Tutorscript phrase is built up
like that unt il the author finds a path to the desired prop-
erty, in this case item n (t he author will need to indicat ed
which exact i tem) of a list of worksheet-column object.

As can be seen in Figure 5, our design call s for the
Tutorscript phrase to be bui lt from the bot tom up, wi th
all the properties of t he base goal-node (label-node in
thi s case) selectable from a pop-up menu. Once a selec-
tion is made, the appropriat e properti es for the next part
of the Tutorscript phrase appears i n a pop-up menu above
the init ial menu, and so on until the author arrives at the
terminal property. The dialog also includes the other fea-
tures of Tutorscript such as ari thmet ic and simple i f-then
statements. The Tutorscript editor is available everywhere
in the system that Tutorscript i s all owed, which includes
predicat es, hint messages, j ust-i n-time-messages , and
other actions taken by the t utor.

4 Usable by Non-programmers
The main concern with t his work i s if the underlying
representation used to represent the object s and rules are
understandable by non-programmers (and indeed, even by
non-cognitive scientist s). Towards that end, a basic study
that assessed the understandabili ty of the object and rule

model was conducted. A major risk associated with thi s
project was not that the resulting tools could not author
meaningful cogniti ve tutors, but rather that the tool s
would be too complex for a non-cogniti ve modeler to
understand. An experiment was conducted to ensure that
the representations developed for the object and rule
viewers could be used and understood by people unfami l-
iar with cognitive models.

Sixteen undergraduate participant s at a middle-s ized
liberal arts university took part in t he study. These stu-
dents had no computer or cognitive sci ence background.
Participants were instructed in one of two ways to repre-
sent informat ion. One of these ways was more consistent
with the older implementation of the authoring system
(that is , a flat, programming-based representati on), and
the other way was more consi stent with the representa-
tion embodied in t he tools discussed above. Part icipants
were first given instruction in object s, propert ies, and
inheritance, as well as represent ing rules relat ing object s
and actions. They were then given a test of thei r under-
standing. The inst ruction used examples of an animal
hierarchy for objects, and a banking example for rules.
The test ing was designed to show whether student s could
generali ze from their i nstruction using animals and bank-
ing to a new, foreign domain using similar representa-
tions. The new domain was based on the exis ting algebra
sys tem developed by Carnegie Learning for both object s
and rules. The questions asked were ones of identifica-
tion, such as “What are the inherited properties of t his
object?” “What are the children of thi s obj ect?” and “Un-
der what conditions wil l thi s message be displ ayed?”

Across both condit ions, the self-paced inst ruction time
was minimal t o get them up to speed, amount ing to less
than 16 min. There were no s ignificant differences be-
tween the two conditions in terms of t ime or accuracy
(average of 75.0%), and all but one of the parti cipants
was significantly above chance in accuracy. The one par-
ticipant not above chance was in the flat representat ion
condition. We take this as evidence that these representa-

Figure 5. TutorScript Editor.

501

tions are readily learnable and usable by non-cogniti ve
sci entis ts and non-programmers. While we expected a
stronger difference between the two conditi ons, with the
hierarchy requiring less time, a difference might not arise
unt il participants have to produce cognitive models, fix
errors, and interact more deeply with the representat ions.
Furthermore, the presentation of the i nformation may not
have had a high enough fidel ity or been intuitive enough
for the parti cipants to accurately gauge di fferences.

A second result comes from a final task in which par-
ticipant s were shown a short narrative about obj ects,
properti es, and rules i n the knowledge domain of cell
phones and calling plans and asked to draw a representa-
tion of this domain freehand, based on the instruction
and test ing they had received. All but 2 of the 16 sub-
jects produced a representat ion that was tree-based, like
Figure 2, as opposed to using a flat representat ion or the
hierarchical file-explorer-s tyle representation (Figure 3).
Thi s suggests that a tree st ructure might be a natural rep-
resentat ion for representing hierarchi es. F uture work will
be needed to determine whether tree di agrams work wel l
in a computer-based context both for representing and
understanding hierarchi cal i nformation.

5 The Rest of the ITS Authoring System
What we described here has been the authoring system
for the cogni tive model . In order to create a complet e ITS
sys tem, many more pieces mus t be in pl ace: the i nter-
face, the curriculum, and problems that fit within the
curriculum. We are at various stages of work on these
pieces. Ritter et al. (1998) described a problem authoring
sys tem for algebra problems. The tools described here
have a s imple mechanism for input ting the problem at-
tri butes problem, but we advocate the creat ion of special
authoring tools for complex problems to open up the
problem authoring process to a wider audience, i ncluding
students . We have an in-house curriculum authoring sys-
tem that enables problems to be put into sections so that
tutor has the information available to provide a curricu-
lum to t he student . The curriculum authoring tool al so
allows the author to pi ck and arrange the skills that the
students will learn. Finally , we currently have a simple
int erface toolkit avail able in java that al lows for t he con-
struction of interfaces that can communicat e to the t utor
backend (described in R itter & Koedinger, 1996). We
envision a tutor GUI construction kit, but that work is in
the future (t he system described by Koedinger et al. does
have such a provis ion).

6 Conclus ions
The work described here is s till ongoing, but the accom-
pli shments have been suffici ent for our team to do real
work with the tool s. Carnegie Learning’s current Algebra
I system is represented successfully using these tool s. A
current project is the re-implementati on of the geometry
cognitive model. While there is some overlap, geometry
offers enough difference for us t o gain perspect ive as to

what the miss ing pieces are in the current implementa-
tion. Next st eps i nclude widening the domains of ITS s
constructed using these tool s, and int egrat ing the various
components of the total ITS authoring syst em.

7 References
Anderson, J. R. & Pelletier, R. (1991). A development

sys tem for model-tracing tutors. In Proceedings of
the International Conference of t he Learning Sci-
ences, 1-8. Evanston, IL.

Anderson, J. R., C onrad, F. G., & Corbett, A. T.
(1989). Ski ll acquisi tion and the LISP Tutor. Cogni-
tive Sci ence, 13, 467-506.

Corbett, A.T. (2001). C ognit ive computer tutors: Solv-
ing the two-s igma problem. In the Proceedings of
the Eighth International Conference of User Model-
ling.

Feigenbaum, E., & Simon, H.A. (1984). EPAM-like models
of recognition and learning. Cognitive Science, 8, 305-
336.

 Graesser, A.C ., Lu, S., Jackson, G.T., Mitchell, H.,
Ventura, M., Olney, A., & Louwerse, M.M. (2004).
 AutoTutor: A tutor with dialogue in natural lan-
guage. Behavioral Research Methods, Inst ruments,
and Computers, 36, 180-193.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren,
B. M., & Hockenberry, M. (2004). Opening the
Door to Non-P rogrammers : Authoring Int elligent Tu-
tor Behavior by Demonst ration. In the Proceedings
of the Seventh Int ernat ional Conference on Intel li-
gent Tutoring Systems.

Morgan, P., & Ritt er, S . (2002). An experimental st udy
of the effect s of Cogni tive Tutor® Alegbra I on stu-
dent knowledge and atti tude.
[ht tp://www.carnegielearning.com/ research/research_r
eports/morgan_ritt er_2002.pdf].

Murray, T. (1999). Authoring Intelligent Tutoring Systems:
An analysis of the state of the art. International Journal
of AI in Education (1999), 10, 98-129.

Murray, T., B lessing, S ., & Ainsworth, S. (2003).
Authoring tools for advanced technology educa-
tional software. Kluwer Academic Publishers.

Munro, A., Johnson, M.C ., Pizzini, Q.A. , Surmon,
D.S ., & Wogulis, J.L. (1996). A tool for building
simulation-based l earning environments . In Simula-
tion-Based Learning Technology Workshop Proceed-
ings, ITS96.

Ritter, S., & Blessing, S. B., Wheeler, L. (2003). User mod-
eling and problem-space representation in the tutor
runtime engine. In P. Brusilovsky, A. T. Corbett , & F.
de Rosis (Eds.), User Modeling 2003 (pp. 333-336).
Springer-Verlag.

Ritter, S., Anderson, J., Cytrynowicz, M., & Medvedeva, O.
(1998) Authoring Content in the PAT Algebra Tutor.
Journal of Interactive Media in Education, 98 (9).

Ritter, S., & Koedinger, K. R. (1996). An architecture for
plug-in tutor agents. Journal of Artificial Intelligence in
Education, 7, 315-347.

VanLehn, K., Lynch, C., Schulze, K., S hapiro, J. A.,
Shelby, R., Taylor, L., Treacy, D., Weinst ein, A.,
& Wintersgill, M. (2005). The Andes physics tutor-
ing syst em: Lessons learned. Int ernat ional Journal
of Artif icial Intelligence and Education, 15(3).

502

