
Abstract
Pro ducin g Int ellig ent Tutori ng Sy stems  (ITSs) is  a
lab or-in tensi ve process , req uirin g man y dif feren t
ski ll se ts. A majo r componen t of an ITS, th e cog ni-
tiv e mod el, h as hi stori cally  requ ired not o nly cog-
nit ive s cience kno wledg e but  also  prog rammi ng
kno wledg e as well.  The tools  described  in t his p a-
per  were  crea ted t o rel ieve this bottl eneck  in p ro-
duc ing commercial-quali ty ITSs.1

1 Introduction
ITS s are comprised of many different parts:  an i nterface,
a l earner-management system,  the curri culum, a t eacher
report system, and a cogniti ve model. It is  this  last
piece, t he cogniti ve model, which enables t he tutor t o
provide help to the student,  assi sting when the student
veers off track and staying out of the way when the s tu-
dent is doing the right  thing. The focus of the work pre-
sented in thi s paper is  the design and creation of tools
centered on the cogniti ve model of an ITS. More speci fi-
cal ly, we are interested in authoring cogni tive model s
appropri ate for model-t racing ITS s, where s tudent input
is checked on every student interaction.

Whi le there have been some great ITS successes (e.g.,
Anderson, et al., 1989,  Koedinger et al., 1997,  Graesser
et al., 2004,  VanLehn et al ., 2005), their development is
a costly  endeavor.  Studies have shown that students who
use an ITS to  learn can mast er the material  in a third less
time (Corbett , 2001). In controll ed studies  in school  set-
tings, ITS-based curricula have been shown to be more
effective in preparing students for st andardized test s
(Morgan & Rit ter, 2002;  also see
www.whatworks .ed.gov). However, estimates for the
creation of t he tutored material range to 100 hours per
hour of instruction or more (Murray, 1999).  To this
point, even with t heir promises of drastically reducing
learning time, there have been few commerci al ITS suc-
cesses, due t o thi s development barrier. For ITS s to be-
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come mainstream and realize their full potenti al, t he crea-
tion of authoring tools  is critical.

The research into authoring tools  for ITS s is still  quit e
new (see Murray, B lessing, &  Ainsworth, 2003 for a
review).  In t he past ITS researchers have had to  design
sys tems from scrat ch, using standard software develop-
ment packages  to construct t he system.  This  requires not
only knowledge of cogni tive science in  order to creat e the
cognitive model, but al so a fair amount of programming
knowledge. Coupled with the domain knowledge re-
qui rements, any si zable ITS system requires  a team of
des igners, each wi th a different skill  set.  Whil e such
team des ign processes are essenti al, t he interdependence
of the t eam can result in bottlenecks.  If t he cogniti ve
sci entis t requires  programming assistance i n order to  get
a piece of work done, t his s lows down the effort . The
goal we have for t his project, which we feel is plaus ible,
is not t o enable an individual to  create a whole ITS,  but
rather t o bet ter assist  the person taking on a particular
rol e to do hi s or her j ob better and more effici ently . A
person who desires  to create a tutor for a parti cular do-
main (be it a cognitive scientist  or perhaps even a master
teacher) should not be requi red to be a programmer to
make substant ial progress in  creating the basics  of t he
cognitive model.

The main chal lenge in t his work i s coming up with
representations that enable the cognit ive model designer
to do their work without any programming and with a
clarity not offered by present systems . Furthermore, this
sys tem i s to be used in  the context of creating and main-
taining cogni tive model s in commercial ly available tu-
tors. This work complements the research  of Koedinger
and his colleagues  (2004), who are investigating other
ways in which non-programmers can create cogniti ve
models for model-t racing tutors. The C ognit ive Tutors
created by Carnegie Learning are in use in over 800
schools across the Unit ed St ates and by hundreds  of
thousands of students. This places additional require-
ments on the tools  with regards t o robustness, maintain-
abi lity,  and integration within a QA process .

In our conceptuali zation, the two main component s of
a model-tracing ITS cogni tive model  are the object
model and the rule hierarchy. The object model repre-
sents the pieces of the domain to  be t utored, and thi s
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object model is used by the rules  to provide the tutoring
to the s tudent. In  the tradi tional approach to authoring
model-tracing tutors (e.g., Anderson & Pell etier, 1991),
working memory elements  correspond to the object
model and a flat representat ion of production rules corre-
spond to  our rule hierarchy.  The parti culars of the i nter-
nal  architecture used by us,  referred to the as the Tutor
Runtime Engine (or TRE), has  been described elsewhere
(Ri tter,  Blessing,  & Wheeler, 2003). A set of tools has
been created that work on top of this archi tecture to  pro-
vide a software development kit (SDK) for cognit ive
models, and the purpose of t his articl e is to describe the
main pieces of thi s cognitive model SDK. The plan be-
hind the SDK is to  apply concepts  that  have been suc-
cessful in other aspect s of computer applications, such as
tree views, hierarchies , and point-and-click int erfaces, t o
the design of model-tracing ITS s. Development of such
representations so they are usable by non-programmers  in
thi s context is di fficult (t o dat e, few ITS  syst ems have
employed them; the VIVIDS system,  Munro et al., 1996,
is an exception that has inspired part  of t he present
work), but critical to lowering the bar in terms  of both
time and money in the creation of such syst ems. While
nothing is automated yet, these t ools provide much more
support and s tructure for creating a cognit ive model than
what exi sted before (which for Cogniti ve Tutor Algebra I
was  essential ly a blank document page).

2 Object Model
One of t he main components of a cognit ive model is the
declarat ive s tructure used to refer to  the objects and their
properti es wi thin the domain being tutored.  As such, a
main issue was the creation of such a tool appropriat e for
a C ognit ive Tutor.  Traditionally this had been accom-
pli shed via code, requi ring both programming and cogni-

tive sci ence knowledge.  The main accomplishment here
is in lowering the bar so that no programming knowledge
is requi red. Moving to more of an object-oriented, object
hierarchy based vi ew is  the key to cos t efficiency in  creat-
ing ITS s, both in  terms of initi al development and in on-
going maintenance.

A main concern in the design of not only this tool,
but  also all of the tools that comprise the syst em, i s that
it support the viewing and editing of the existi ng cogni-
tive models t hat have been produced by Carnegie Learn-
ing. Thi s would ensure that the t ools were of suffici ent
value to  produce commercial-quali ty cogniti ve models.
To this end, all t ools described here meet that goal.

The requirements for this particular t ool are similar to
other existing tools (e.g., Protégé, an open-sourced on-
tology editor developed at S tanford Univers ity),  in t hat
the basi c functionality  is t o display and edit object s con-
sis ting of at tribute/value pairs.  However, there are addi-
tional requirement s for Cognitive Tutors that makes us-
ing any off-t he-shelf or previous ly produced software
problematic. In particular, pre-defined object t ypes exist
that have their own properti es and behaviors. For exam-
ple there is a Goalnode object type (representing a s tu-
dent’s subgoal in the problem), that has  a set of prede-
fined propert ies, and attached to  these Goalnode types is
a predicate t ree i nspector (the subject of the other main
tool, representing the rule hierarchy). Also, the values of
all  properties are typed, and thi s has  impl icati ons for
other aspects  of t he system in particular (e.g.,  the use of
Tutorscript, a topic to  be discussed l ater).

Figure 1 shows the design of the tool.  The left pane of
that des ign shows the currently l oaded object hi erarchy
(including objects  and properties ) and the right  pane
shows information about  the currently selected i tem in
the left  pane. There are provisions for adding, moving,

Figure 1. Object Model Editor.
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and deleting objects and properti es, as wel l as maint ain-
ing other aspects of the tree.

The final, working vers ion follows qui te closely from
thi s des ign. The full object  hierarchy for Carnegie Learn-
ing’s existing algebra and middle school math tutors can
be viewed and edit ed us ing this t ool (consi sting of ap-
proximately 85 objects with 365 properties). In the past,
these hi erarchies were viewable only i n a s tandard code
window, and the definit ion of the various object s and
properti es were often scattered across  pages of code and
contained in several fi les. In addition, object hierarchies
for other tutors have been entered using this tool. The
superior visualization offered by the Object Model Editor
has  encouraged more code-sharing between di fferent tu-
tors, and has  helped to  identify and correct ineffici encies
in the representat ion of obj ects.  We feel t hat using this

tool to enter, edi t, and maintain object hi erarchies for
Cognitive Tutors i s a clear win for the des ign of the ob-
ject model of an ITS cogniti ve model. It has enabled us
to find inefficiencies within exi sting code and to al low
non-cognitive scientist s to creat e cognitive models .

3 Rule Hierarchy
In addit ion to the object model, the other main piece of a
cognitive model specifi es the goal-state behaviors, such
as right  answers, hints , and just -in-t ime-messages—the
backbone of a model-tracing tutor. The task is t o des ign
an editor for these rul es, hints,  and actions. As previ-
ous ly st ated,  one goal was t hat t he vi ewer needed to dis-
play the exis ting rule sets that Carnegie Learning has
developed (as  a reference, C arnegie Learning’s Algebra I
cognit ive model has approximately 500 rul es).

Figure 2. Predicate Tree Schematic.

Figure 3. Predicate Tree Inspector.
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Again, t he main challenge is  to come up with a repre-
sentation that is natural and understandable by non-
programmers. Like with the object  model, the traditional
method of creating these rul es was through code.  How-
ever, we developed a non-code based representati onal
scheme for these rules.  The rules  used by the cogniti ve
modeling syst em share some features in  common wi th
the EPAM syst em (S imon & Feigenbaum, 1984),  in t hat
the predicates for the rules  form a hi erarchical  tree, with
most of the actions appearing at the l eaf nodes.  The
nodes contain the tests  (predicat es) used to det ermine the
behavior of t he system.  This  behavior is di ctated by how
properti es of the problem are coded in  the object hierar-
chy and the subsequent actions of the student.

Figure 2 shows a schematic diagram of one of one of
these trees. Each tree is particular t o one type of goal
state, and so the tests  apply only to that goal state. For
example,  one test,  or predicate, within the algebra cogni-
tive model is  if t he cell-type (a property) of a worksheet -
cel l (a goalnode) is “expression.” Later predi cates  within
the tree test  whether t he express ion cell i s of the form
“mx” or “mx+ b”. These properties  are determined when
the problem i s authored. As seen in the schemati c, the
cognitive model is  structured around these kinds  of
predicat es.  When a given predicate is  sati sfied, the stu-
dent may see hints  or “JITs” (j ust-i n-time feedback mes-
sages).  However, not all propert ies t hat are important for
tutoring can be determined at authoring time, so some
properti es must wait until t he student  is i n the mids t of
solving the problem, or at runtime. In  the diagram, “RC”
notates a Runtime Condi tion and “SIRC” notates a Stu-
dent Input Runtime Condition. A R untime Condition
might, for example, specify that the hint t o be given de-
pends on whether t he student  has already complet ed part
of the problem. A just-in-time message is t riggered by
SIR Cs, because they depend on what the student entered.

Figure 3 shows the design for thi s Predicat e Tree In-
spector.  The upper left  pane of t he design shows the
predicat e tree hierarchy for a particular goalnode. The
upper ri ght pane shows the full set of predicate test s for
the selected node at the left, and the lower right pane
shows the hints, j ust-i n-time messages , and other tutor-
ing actions attached at  this  node. Finally,  the lower left
pane shows the Act ion C atalog, to  be used for repeated
tutoring actions within a tree. As des ired,  the Predi cate
Tree Inspector has  the funct ional ity t o view all  the rules
and all their part s that comprise Carnegie Learning’s  Al-
gebra I cogni tive model .

3 .1  Rule Edito r
As shown in F igure 2, t he nodes contain one or more
predicat es that test certain  aspects of the current s tate of
the problem. This is akin to  a typical  production that
contains  working memory test s in a rul e-based system.

As with the Object  Model edi tor, the challenge here i s to
make such a representat ion unders tandable and usable by
a non-programmer. The original Algebra I rules were
bui lt us ing a toolkit constructed on top of Common Li sp
(the Tutor Development Kit, Anderson & Pell etier,
1991). While usable for simple tutors by non-Lisp pro-
grammers , the TDK still  had a deep learning curve.

What is requi red i s a system that  lays  bare what  is
needed to produce statements  such as “give this help
message when the s tudent is in an expression cel l of the
form mx+ b and the problem involves money” and “pro-
vide thi s jus t-in-time help message if the student enters
an expression but leaves off the intercept. ” In addit ion to
providing an intui tive way to ent er such express ions
when required, the interface needs to guide the author in
creating the syntax for each part  of t he predicate and pro-
vide templates for entering help,  just -in-t ime-messages,
and the other acti ons t hat can be performed by the tutor.

Figure 4. Rule Editor .
The language that is used in  these predicat es and in

other parts of the SDK to refer t o a working memory
state is  call ed Tutorscript. We modeled this  scripting
language on those found in other object-ori ented envi-
ronments  (e.g ., Applescript i n the Macintosh operating
sys tem).  It provides an Engl ish-l ike way for non-
programmer authors  to refer to the needed aspect s of the
problem state within the rul e system.

3 .2  Tuto rscript  Edito r
Tutorscript provides a way for the author t o refer to  the
object hierarchy within the const raint s of the rules used
by the cognit ive model.  Therefore, it is used not only in
the predicates used within t he rules, but also i n the hint
and just -in-t ime message templates, as  well  as other as-
pects of the authoring system. In addi tion to providing a
way for authors to  refer to properties  within the obj ect
model, t he syntax of Tutorscript also provides simple
if/ then clauses, arithmetic,  and formatted output.
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The only provision within the older authoring tools
for Tutorscript was for the author to  type out the refer-
ence. This pl aced a burden on the author to  remember the
syntax and the route through object space t o reach the
des ired property. This added greatly t o the programming
aspect of what should be a cognit ive modeling task.

Des igning a Tutorscript editor is a chal lenge because a
Tutorscript phrase is read from l eft t o right, but is  more
properly cons truct ed from right t o left. A piece of Tutor-
script l ike displayed in Figure 5, “it em n of columns  of
worksheet of problem of tutor [of label-node]” s tarts  with
all  the properties  accessibl e from the goalnode label-
node, of which tutor is  one.  The tutor property itself
resolves  to an object which has certain properti es, of
which problem is  one.  The Tutorscript phrase is built up
like that unt il the author finds a path to the desired prop-
erty, in  this  case item n (t he author will need to indicat ed
which exact i tem) of a list of worksheet-column object.

As can be seen in Figure 5, our design call s for the
Tutorscript phrase to be bui lt from the bot tom up, wi th
all  the properties  of t he base goal-node (label-node in
thi s case) selectable from a pop-up menu. Once a selec-
tion is made,  the appropriat e properti es for the next  part
of the Tutorscript phrase appears i n a pop-up menu above
the init ial menu, and so on until  the author arrives at the
terminal  property.  The dialog also includes  the other fea-
tures of Tutorscript such as ari thmet ic and simple i f-then
statements. The Tutorscript editor is available everywhere
in the system that  Tutorscript i s all owed,  which includes
predicat es, hint messages, j ust-i n-time-messages , and
other actions  taken by the t utor.

4 Usable by Non-programmers
The main concern with t his work i s if the underlying
representation used to represent the object s and rules are
understandable by non-programmers  (and indeed, even by
non-cognitive scientist s). Towards that end, a basic study
that assessed the understandabili ty of the object and rule

model was conducted. A major risk associated with thi s
project was not that the resulting tools could not author
meaningful cogniti ve tutors,  but rather that the tool s
would be too complex for a non-cogniti ve modeler to
understand. An experiment was conducted to ensure that
the representations developed for the object and rule
viewers could be used and understood by people unfami l-
iar with cognitive models.

Sixteen undergraduate participant s at a middle-s ized
liberal arts university  took part  in t he study. These stu-
dents had no computer or cognitive sci ence background.
Participants were instructed in one of two ways to repre-
sent informat ion. One of these ways was more consistent
with the older implementation of the authoring system
(that is , a flat, programming-based representati on), and
the other way was more consi stent  with the representa-
tion embodied in t he tools discussed above.  Part icipants
were first given instruction in object s, propert ies, and
inheritance, as well as  represent ing rules relat ing object s
and actions. They were then given a test of thei r under-
standing. The inst ruction used examples of an animal
hierarchy for objects, and a banking example for rules.
The test ing was designed to show whether student s could
generali ze from their i nstruction using animals and bank-
ing to a new,  foreign domain using similar representa-
tions. The new domain was based on the exis ting algebra
sys tem developed by Carnegie Learning for both object s
and rules. The questions asked were ones of identifica-
tion, such as  “What are the inherited properties  of t his
object?” “What are the children of thi s obj ect?” and “Un-
der what  conditions wil l thi s message be displ ayed?”

Across both condit ions,  the self-paced inst ruction time
was  minimal t o get  them up to speed, amount ing to less
than 16 min. There were no s ignificant  differences be-
tween the two conditions in terms  of t ime or accuracy
(average of 75.0%), and all but one of the parti cipants
was  significantly above chance in  accuracy.  The one par-
ticipant  not above chance was in the flat representat ion
condition. We take this  as evidence that these representa-

Figure 5. TutorScript Editor.
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tions are readily learnable and usable by non-cogniti ve
sci entis ts and non-programmers. While we expected a
stronger difference between the two conditi ons, with the
hierarchy requiring less time, a difference might not  arise
unt il participants  have to produce cognitive models, fix
errors, and interact more deeply with the representat ions.
Furthermore, the presentation of the i nformation may not
have had a high enough fidel ity or been intuitive enough
for the parti cipants to  accurately gauge di fferences.

A second result comes from a final task in which par-
ticipant s were shown a short  narrative about obj ects,
properti es, and rules i n the knowledge domain of cell
phones and calling plans and asked to draw a representa-
tion of this domain freehand, based on the instruction
and test ing they had received.  All but 2 of the 16 sub-
jects produced a representat ion that was tree-based, like
Figure 2, as opposed to  using a flat representat ion or the
hierarchical file-explorer-s tyle representation (Figure 3).
Thi s suggests  that  a tree st ructure might be a natural rep-
resentat ion for representing hierarchi es. F uture work will
be needed to determine whether tree di agrams work wel l
in a computer-based context both for representing and
understanding hierarchi cal i nformation.

5 The Rest of the ITS Authoring System
What we described here has been the authoring system
for the cogni tive model . In order to create a complet e ITS
sys tem, many more pieces mus t be in pl ace: the i nter-
face, the curriculum, and problems that fit  within the
curriculum. We are at various stages of work on these
pieces. Ritter et al. (1998) described a problem authoring
sys tem for algebra problems.  The tools  described here
have a s imple mechanism for input ting the problem at-
tri butes  problem, but we advocate the creat ion of special
authoring tools for complex problems to open up the
problem authoring process to  a wider audience, i ncluding
students . We have an in-house curriculum authoring sys-
tem that  enables problems to  be put into sections so that
tutor has the information available to  provide a curricu-
lum to t he student . The curriculum authoring tool al so
allows the author to pi ck and arrange the skills  that  the
students  will  learn. Finally , we currently have a simple
int erface toolkit avail able in java that al lows for t he con-
struction of interfaces  that  can communicat e to the t utor
backend (described in R itter & Koedinger, 1996). We
envision a tutor GUI construction kit,  but that work is in
the future (t he system described by Koedinger et al. does
have such a provis ion).

6 Conclus ions
The work described here is s till ongoing, but the accom-
pli shments have been suffici ent for our team to do real
work with the tool s. Carnegie Learning’s current  Algebra
I system is represented successfully using these tool s. A
current project is  the re-implementati on of the geometry
cognitive model. While there is some overlap, geometry
offers enough difference for us t o gain perspect ive as to

what the miss ing pieces  are in the current implementa-
tion. Next st eps i nclude widening the domains of ITS s
constructed using these tool s, and int egrat ing the various
components of the total  ITS authoring syst em.
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