

The Accidental Tutor: Overlaying an
Intelligent Tutor on an Existing User
Interface

Abstract
Intelligent Tutoring Systems (ITSs) have been shown to
have dramatic impact on student learning [9].
However, these gains have been mostly in topics in
which the interface has been designed with the
intelligent tutor in mind. This research investigates the
HCI challenges that result from creating two model-
tracing ITSs for use with existing interfaces. We
describe overlaying a tutor on an image-editing
program and a web-based application. We highlight
three main HCI challenges: 1) integrating a problem
scenario in the context of the existing application, 2)
providing learners with appropriate feedback during
task performance, and 3) allowing learners to explore
the interface while making sure they complete the task.

Keywords
Intelligent tutoring system, interaction design

ACM Classification Keywords
H.5.2. Graphical user interfaces; Interaction styles;
Training, help, and documentation. Copyright is held by the author/owner(s).

CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA

ACM 978-1-60558-247-4/09/04.

Stephen B. Gilbert
Iowa State University

1620 Howe Hall

Ames, IA 50011-2274 USA

gilbert@iastate.edu

Stephen B. Blessing
University of Tampa

401 W. Kennedy Blvd. Box Q

Tampa, FL. 33606-1490 USA

sblessing@ut.edu

Liz Blankenship
University of Michigan

School of Information

1085 South University Ave.

304 West Hall

Ann Arbor, MI 48109-1107 USA

lizblank@umich.edu

Introduction
In this research, intelligent tutoring systems (ITSs) are
built on top of already existing third-party application
interfaces for the purposes of software training. An ITS
is a system which provides a learner with a series of
problem scenarios to work through (tasks), provides
feedback to the learner either during or after the
learner’s interaction with the system, and builds a
model of the learner’s mastered skills along the way.

The unique contributions of this research overall consist
of 1) our technical approach to the under-investigated
task of creating an ITS on top of existing third-party
software applications that were not originally intended
to enable tutoring, 2) validating our approach in two
systems by increasing user competence more quickly
[7,12], and 3) an analysis of the interaction design
challenges that result from the “mashup” of an ITS and
an original application, altering the original application’s
intended interaction patterns [6]. This paper focuses on
the last component.

The cognitive model within an ITS can provide feedback
after every learner interaction, tacit approval for
positive progress, or for errors or explicit requests for
help, the system may display a help message or
highlight the mistake in some way. A decision in the
interaction design of an ITS is how tightly to hold the
learner to a successful path towards the goal vs.
allowing exploration. Note that unlike "click-through"
training videos, ITSs can allow the learner multiple
correct paths to complete a task.

Model-tracing ITSs have been shown to be effective
across a wide variety of learning domains (e.g.,
algebra, chemistry, physics and even English

composition). Typical results indicate a 30%
improvement on standardized tests such as the SATs
and significant learning time reductions [4]. Many of
these results, however, have used interfaces
specifically designed with the tutor in mind.

Re-using the existing interface with a tutor reduces
both the time required to develop the tutor and any
issues of learning transfer. With some ITSs, researchers
have had concerns about whether skills being learned
in the ITS will transfer to the non-ITS environment [5].
If the ITS environment is the same as the non-ITS
environment (e.g., learning how to edit images in the
context of Adobe Photoshop itself, rather than
alternating between a tutorial video and the software),
then such issues of transfer largely disappear.

Related Systems: Help & User Assistance
Intelligent Tutoring Systems, interactive help and
Computer-Assisted Instruction (CAI) programs have
been built on top existing applications since the 1970s
[13]. Unlike in many earlier systems, the tasks within
xPST tend to be large in scope with multiple paths to
successful completion, and the help and error messages
are intended to provide more cognitively-based
instruction, teaching the user an appropriate conceptual
model of the software: not only what to click next, but
why. xPST also has the potential to track a learner’s
skills across tasks, allowing for personalized instruction
and monitoring of which skills are mastered.

Research Context
This research is based on two efforts to overlay
intelligent tutoring systems on existing software
interfaces that were not originally designed for tutoring.
The first is Paint.NET, a standalone .NET application for

Windows much like Adobe Photoshop. The Paint.NET
tutor produced significantly better task performance
than learners with "click-through" training videos [7].
The second is a web-application called the CAPE Web-
Based Authoring Tool, created as part of the VaNTH
Engineering Research Center, which we will call the
CAPE tutor below. The web-based CAPE tutor reduced
the time to complete a training task by an average of
14% and reduced user frustration [12]. While these
experimental studies are discussed in detail elsewhere,
this work focuses on the interaction design involved.

Intelligent Tutoring Architecture: xPST
Ritter and Koedinger proposed an architecture for
building a tutor for an existing interface and
demonstrated two examples of using it in [11]. Our
previous work [1, 7, 12] has been inspired by this
approach and investigated the technical feasibility of
instantiating an architecture that can accomplish similar
goals more generally and achieve the results they
foresaw with web-based tutoring. The overall
architecture of xPST is illustrated in Figure 1.

The Cognitive Model includes information describing the
objects within the learning domain and rules that
determine which feedback the student will receive at
any given moment. Every interface element of the
application for which we need learning instruction is
mapped to an object and has one or more rules
associated with it. The rules contain the instructional
feedback. The curriculum contains a set of tasks to
complete. The Event Mapper eavesdrops on user
actions and sends them to the xPST tutoring Engine,
which checks them with the Cognitive Model. Relevant
feedback is mapped back to the client UI control and
displayed in situ. Note that while ITSs for academic

topics like physics typically require a more complex
cognitive model, so that learners can receive high-
quality personalized feedback across a large number of
similar physics problems, software training does not
require such repetitive tasks, and the cognitive models
are typically simpler and thus "problem specific."

The third-party software could be a stand-alone
application or a website. If tutoring on a stand-alone
application, the system can listen for user events in
three ways: by using 1) widgets that automatically
send the needed events (the method used in [11] with
AppleEvents); 2) accessibility hooks built into the
software (used frequently by screen readers and
software like Adobe Captivate); and 3) low-level OS
events. xPST enables tutoring on any website viewable
in Firefox that can be monitored via the Document
Object Model (DOM) or on any stand-alone application
in which you can insert a "listener" function to
eavesdrop on user events. The xPST Engine runs on its
own server or locally and communicates with the other
components via TCP/IP, allowing the tutored application
and the tutor to run on different servers.

Interface Design Challenges
The instructional design of an ITS is usually based on
principles summarized by [2] that emphasize "learning
by doing." The ideal learning environment includes
doing a task that is relevant to the learner with
scaffolding from a human tutor. A good human tutor
accomplishes several interaction design feats that
challenge a software-based tutor: human tutors 1)
distinguish themselves from the software to be learned,
2) balance learner exploration with interruption for
guidance, and 3) offer feedback with an appropriate
balance of what to do next (procedural guidance) and

Figure 1. xPST system, an
instantiation of the
architecture of plug-in tutor
agents described by Ritter &
Koedinger in [12]. xPST is
open source and available on
Google Code.

why (conceptual guidance). The software-based tutor,
the ITS, must accomplish these feats while being easy
to use, effectively supporting the learning goals, and
making up for any shortcomings in the usability of the
underlying interface.

The first concern, distinguishing the tutor from the
software being tutored is necessary when the tutor is
present only during a training context and absent
during regular use (as with xPST), rather then deeply
integrated and present at all times. A tutor for training
that chooses the learner's goals is far easier to
construct than a full-time integrated tutor, which
requires inference of those goals during use of the
software. To distinguish itself, the xPST tutor has a
more casual look and feel than most software, e.g.,
using bright colors throughout and hand-drawn-looking
coachmarks (see Figure 2). When tutoring on websites,
the xPST task scenario appears in a separated sidebar.

The second concern is more complex: knowing when to
interrupt and whether to take control. This issue exists
with all ITSs, but when tutoring on existing software
that is designed to be highly powerful with many menus
and subdialogs, the issue becomes more complex;
users often like to learn by exploring. Click-through
training videos based on screencasts (e.g., Camtasia,
Captivate) resolve this issue at one extreme: the
learner has no control; she or he is restricted to follow
a path dictated by the creator of the tutorial. A system
that offers the learner full control but no help
whatsoever is the other extreme.

Several design challenges arise from this control issue.
Should the tutor disable certain features of the
interface, making it easier to focus on relevant UI

features that need to be learned (ala Training Wheels in
[3]), or leave all features enabled, so that the learner
can explore in an ad hoc fashion? If the latter, how
much exploration should be allowed? Microsoft
Windows Guided Help, for example, grays out all
controls except the control that must be clicked next.

A second control-based issue arises from the existence
of multiple correct paths to the goal, e.g. remove red-
eye from an image and then reorient it, or reorient it
first. The design challenge is whether to teach the
learner a variety of methods or remain silent while the
learner progresses to the goal, even on a suboptimal
path. The xPST architecture encourages the latter
approach, initially preparing hints towards the optimal
path, but then queuing up hints along a sub-optimal
but successful path if the learner has started along it.

Design Principles
Our ITS designs address the second and third
challenges posed by the human tutor above by
following several basic principles: A) leave features of
the software intact (i.e., do not disable components);
B) interrupt the learner as little as possible; C) give
feedback in many small doses, so that an expert can be
satisfied with a little but a beginner can find more
detail; and D) only stop the learner if he or she is about
to take a step that would lead down an irreparable path
(e.g., deleting a key element). These principles still
leave several options for reacting to errors. For
example, the ITS could block a learner’s action and say,
“Sorry! This step would lead to….” That approach is
highly invasive, however, and a preferable approach
when possible is to allow the step but give the
message, “Note that you have just… A better way is
to…” This method allows the learner to fail (and thus

Figure 2. A Just-In-Time error
message (JIT). The tutor circles the
error and gives the message upon
mouse-over.

learn), but informs why it is incorrect. Research from
ACT-based model-tracing ITSs suggests that it is better
to have the tutor intervene much sooner rather than
later, and not have the student explore longer fruitless
paths [5].

Specific Interaction Challenges
We now discuss the three specific design challenges
mentioned previously: 1) integrating a problem
scenario into the context of the existing application, 2)
providing learners with appropriate feedback during
task performance, and 3) allowing learners to explore
the interface while making sure they complete the task.

First, in the software to be learned, the learner needs a
way to initiate the tutor and choose a task. In both
ITSs we designed so far, “Tutor” was added to a menu
item to load a task list from the curriculum. The
scenario and requirements of the selected task were
then displayed in a sidebar in Firefox or in a floating
task panel in Paint.NET. These sidebars contain not
only a description of the task, but also some conceptual
knowledge relating to the task.

Learners are given feedback when they take incorrect
steps in the form of Just-In-Time error messages
(JITs). JITs may be presented either in a modal state,
forcing the user to click or make a key press to dismiss
the message, or they may be non-modal, not requiring
interaction before the user proceeds. In the case of
Paint.NET, actions producing an incorrect state were
often allowed to affect the image canvas, but a modal
JIT forcing the user to undo would occur on top of the
canvas (Figure 3). This approach allowed the user to
make a mistake and see the consequences but still be
guided back on path.

When building a tutor on top of an existing interface,
much more than when the interface is designed with
the tutor, the tutor must instruct the learner concerning
the interface itself in addition to the domain knowledge.
The cognitive model must therefore provide appropriate
guidance to help users overcome any usability flaws in
the underlying program, which the tutor author has no
control over. For instance, with the CAPE tutor, several
buttons with the same label “New” are often visible on
the screen at the same time. If learners click the wrong
one, the tutor blocks the action and appropriately
directs them to the correct one.

The last challenge relates to allowing the learner to
explore the system while still solving the task at hand.
Blocking learner interactions is not as common in tutors
with custom interfaces, because the interface is
designed to accommodate tutoring and usually does not
have a dramatic number of possible user actions.
Constructing a tutor on an existing interface requires
consideration of all the application states that can be
reached, and the different paths to those states (e.g.,
via menu selections or keyboard equivalents). There is
a trade-off between the amount of flexibility that can
be allowed in the learner’s execution of the task and
the difficulty in creating a cognitive model that
identifies and guides the user through these many
possible application states. As stated previously, we
advocate a “middle-of-the-road” approach where
learners are allowed to explore, but if they attempt to
do an irreversible step, we block that attempt. Also, to
facilitate the exploration of menus, a learner was
allowed to browse them as much as desired, even when
the menus were not related to a possible next correct
step.

Figure 3. Just-In-Time error
messages (JITs) can be modal (on
top) if they require action or
ambient, with feedback upon hover
if not.

In our testing of the CAPE tutor [12], one user who had
used the CAPE tool before commented on the restrictive
nature of the tutor, suggesting that the tutor was
better suited for beginners. Possibilities for future
research include increasing the amount of flexibility and
providing more accurate feedback based on monitoring
the user's skill level.

Summary
We have created xPST to investigate ways to increase
the learnability of software by overlaying a tutor on
existing interfaces, getting positive results from two
initial efforts. These two systems demonstrate the
viability of how we overcame three HCI challenges in
overlaying an intelligent help and guidance system on
existing software. This research can assist designers in
integrating an original interface with a tutor to increase
learning transfer. Future work will extend xPST to
game-based environments, which are faster-paced with
more state variables than a productivity application.
Separate but parallel work investigates the usability of
xPST authoring tools by novices.

This work was supported in part by the National
Science Foundation under OII-0548754 and EEC-
9876363.

Citations
[1] Blessing, S. B., Gilbert, S, & Ritter, S. Developing
an authoring system for cognitive models within
commercial-quality ITSs. Proc. of the 19th Int’l FLAIRS
Conference, AAAI Press (2006), 497-502.

[2] Bransford, J.D., Brown, A.L. & Cocking, R.R. How
people learn: Brain, mind, experience, and school.
Washington, DC: National Academy Press, 2000.

[3] Carroll, J. & Carrithers, C. (1984) Training wheels
in a user interface. Comm. ACM 27(8), 800-806.

[4] Corbett, A.T. Cognitive computer tutors: Solving
the two-sigma problem. User Modeling: Proc. of the 8th
Int’l Conf, UM 2001, 137-147.

[5] Corbett, A., Koedinger, K., & Anderson, J.
Intelligent tutoring systems. Helander, Landauer &
Prabhu, (Eds.) Handbook of Human-Computer
Interaction (2nd), Elsevier Science, (1997), 849-874.

[6] Hartmann, B., Doorley, S., & Klemmer, S.R.
Hacking, Mashing, Gluing: Understanding Opportunistic
Design. Pervasive Computing, 2008.

[7] Hategekimana, C., Gilbert, S. & Blessing, S.
Effectiveness of using an intelligent tutoring system to
train users on off-the-shelf software. In K. McFerrin et
al. (Eds.), Proc. SITE 2008., AACE (2008), 414-419.

[8] Koedinger, K. R., Anderson, J. R., Hadley, W. H., &
Mark, M. A. Intelligent tutoring goes to school in the big
city. Int’l J. of AI in Education, (1997), 30-43.

[9] Livak, T., Heffernan, N. T., Moyer, D. (2004). Using
cognitive models for computer generated forces and
human tutoring. 13th Ann'l Conf. on Behavior
Representation in Modeling and Simulation.

[10] Murray, T. Authoring Intelligent tutoring systems:
Analysis of the state of the art. Int'l J. of AI in
Education, 1999, 98-129.

[11] Ritter, S., & Koedinger, K. (1996) An Architecture
for Plug-in Tutor Agents, J. of AIED, 7(3-4) 315-347.

[12] Roselli, R.J., Gilbert, S., Howard, L., Blessing, S.
B., Raut, A., & Pandian, P. (2008). Integration of an
Intelligent Tutoring System with a Web-based
Authoring System to Develop Online Homework
Assignments with Formative Feedback. Proc. ASEE
2008.

[13] Shute, V. & Psotka, J. (1996) "Intelligent tutoring
systems: past, present, and future," Handbook of
Research on Educational Communications and
Technology , Macmillan, New York, 570-600.

