### Geologic Time



### **Current Florida Standards Addressed**

- SC.912.N.1.1: Define a problem based on a specific body of knowledge, for example: biology, chemistry, physics, and earth/space science, and do the following: (reference 1-11)
- SC.912.N.1.6: Describe how scientific inferences are drawn from scientific observations and provide examples from the content being studied.
- SC.912.N.2.4 Explain that scientific knowledge is both durable and robust and open to change. Scientific knowledge can change because it is often examined and re-examined by new investigations and scientific argumentation. Because of these frequent examinations, scientific knowledge becomes stronger, leading to its durability.
- □ SC.912.L.14.5 Explain the evidence supporting the scientific theory of the origin of eukaryotic cells (endosymbiosis).
- SC.912.L.15.3: Describe how biological diversity is increased by the origin of new species and how it is decreased by the natural process of extinction.
- SC.912.L.15.8: Describe the scientific explanations of the origin of life on Earth.
- SC.912.L.16.5: Explain the basic processes of transcription and translation, and how they result in the expression of genes.
- SC.912.L.18.1-4: Describe the basic molecular structures and primary functions of the four major categories of biological macromolecules.
- SC.912.E.5.1 Cite evidence used to develop and verify the scientific theory of the Big Bang (also known as the Big Bang Theory) of the origin of the universe.
- SC.912.E.5.5 Explain the formation of planetary systems based on our knowledge of our Solar System and apply this knowledge to newly discovered planetary systems
- SC.912.E.6.1 Describe and differentiate the layers of Earth and the interactions among them
- Sc.912.E.6.3: Analyze the scientific theory of plate tectonics and identify related major processes and features as a result of moving plates.)
- SC.912.P.8.7 Interpret formula representations of molecules and compounds in terms of composition and structure
- SC.912.P.8.10 Describe oxidation-reduction reactions in living and non-living systems
- LA.910.2.2.3 The student will organize information to show understanding or relationships among facts, ideas, and events (e.g., representing key points within text through charting, mapping, paraphrasing, summarizing, comparing, contrasting, or outlining)
- MACC.912.N-Q.1.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
- MACC.912.A-CED.1.1Create equations and inequalities in one variable and use them to solve problems.
- MA.912.S.1.2 Determine appropriate and consistent standards of measurement for the data to be collected in a survey or experiment.

### NGSS Science and Engineering Practices

1. Asking questions (for science) and defining problems (for engineering)

- 2. Developing and using models
- 3. Planning and carrying out investigations
- 4. Analyzing and interpreting data
- 5. Using mathematics and computational thinking

6. Constructing explanations (for science) and designing solutions (for engineering)

- 7. Engaging in argument from evidence
- 8. Obtaining, evaluating, and communicating information



# **Crosscutting Concepts**

- Patterns.
- 2. Cause and effect



- 3. Scale, proportion, and quantity
- 4. Systems and system models
- ✓ 5. Energy and matter:
- 6. Structure and function.
- 7. Stability and change.



#### **Geologic Time Scale Activity**

#### Table 1. The development of life through time.

| Million years  |                                                                                             | Relative to a calendar                 |
|----------------|---------------------------------------------------------------------------------------------|----------------------------------------|
| before present | Era, System, or Event                                                                       | year                                   |
|                | Precambrian                                                                                 |                                        |
| 4600           | Earth formed from planetary nebula                                                          | 1/1/04 12:00 AM                        |
| 3900           | Inferred origin of life (first cells)                                                       | 2/25/04 4:41 PM                        |
| 3800<br>3600   | Oldest age-dated rocks on Earth                                                             | 3/4/04 3:39 PM<br>3/20/04 1:33 PM      |
| 3250           | Fossil blue-green algae and stromatolites (prokaryots)<br>First fossil evidence of bacteria | 3/20/04 1:33 PM<br>4/17/04 9:54 AM     |
| 2100           | First fossil evidence of cells with a nucleus                                               | 7/17/04 9:54 PM                        |
| 1500           | First multi-celled organisms (seaweed and algae)                                            | 9/3/04 3:39 PM                         |
| 670            | Oldest marine worms and jellyfish                                                           | 11/8/04 4:35 PM                        |
| 600            | Vendian period begins: Edicarian fossils                                                    | 11/14/04 6:15 AM                       |
| 544            | Paleozoic                                                                                   | 11/18/04 5:11 PM                       |
| 544<br>515     | Cambrian system begins<br>Burgess Shale organisms: first animals with a                     | 11/18/04 5:11 PM<br>11/21/04 12:34 AM  |
| 505            | Ordovician system begins                                                                    | 11/21/04 7:40 PM                       |
| 505            | First fish                                                                                  | 11/21/04 7:40 PM                       |
| 470            | First fossil evidence of land plants                                                        | 11/24/04 2:30 PM                       |
| 438            | Silurian system begins                                                                      | 11/27/04 3:36 AM                       |
| 430            | First vascular land plants                                                                  | 11/27/04 6:53 PM                       |
| 414            | Oldest lung fish fossils                                                                    | 11/29/04 1:26 AM                       |
| 408<br>408     | Devonian system begins<br>Oldest fossil evidence of mosses                                  | 11/29/04 12:53 PM<br>11/29/04 12:53 PM |
| 385            | First insects (beetles), scorpions, and centipedes                                          | 12/1/04 8:49 AM                        |
| 380            | First lobe-finned fish                                                                      | 12/1/04 6:21 PM                        |
| 375            | First land animals (amphibians)                                                             | 12/2/04 3:54 AM                        |
| 370            | First sharks                                                                                | 12/2/04 1:27 PM                        |
| 365            | First seed plants (ferns)                                                                   | 12/2/04 11:00 PM                       |
| 360<br>330     | Mississippian system begins                                                                 | 12/3/04 8:33 AM                        |
| 330            | First possible reptiles<br>Pennsylvanian system (Kentucky coal)                             | 12/5/04 5:50 PM<br>12/6/04 12:56 PM    |
| 286            | Permian system begins                                                                       | 12/9/04 5:51 AM                        |
| 260            | Sail-backed reptiles (Dimetrodon)                                                           | 12/11/04 7:30 AM                       |
| 245            | End of Paleozoic, 96% of all life on Earth perishes                                         | 12/12/04 12:09 PM                      |
|                | Mesozoic, the "Age of Reptiles"                                                             |                                        |
| 245            | Triassic system begins                                                                      | 12/12/04 12:09 PM                      |
| 240<br>228     | First crocodiles<br>First dinosaurs (Eoraptor and Saltoposuchus)                            | 12/12/04 9:42 PM<br>12/13/04 8:37 PM   |
| 228            | First dinosaurs (Eoraptor and Saltoposuchus)<br>First mammals (shrew-like)                  | 12/13/04 8:37 PM<br>12/14/04 9:59 AM   |
| 210            | First turtles                                                                               | 12/15/04 6:59 AM                       |
| 208            | Jurassic system begins                                                                      | 12/15/04 10:48 AM                      |
| 195            | Dilophosaurus, an early Jurassic dinosaur                                                   | 12/16/04 11:38 AM                      |
| 155            | First bird, Archeopteryx                                                                    | 12/19/04 4:01 PM                       |
| 152            | Apatosaurus and Brachiosaurus (long-necked                                                  | 12/19/04 9:44 PM                       |
| 150<br>148     | Allosaurus, (meat-eating dinosaur)<br>Stegosaurus, (plate-backed dinosaur)                  | 12/20/04 1:33 AM<br>12/20/04 5:23 AM   |
| 148            | Cretaceous system begins                                                                    | 12/20/04 5:23 AM<br>12/20/04 1:01 PM   |
| 115            | First flowering plants                                                                      | 12/22/04 8:24 PM                       |
| 82             | Duck-billed dinosaurs (Maiasaurus)                                                          | 12/25/04 11:24 AM                      |
| 80             | Protoceratops (first dinosaur eggs discovered)                                              | 12/25/04 3:14 PM                       |
| 75             | Triceratops                                                                                 | 12/26/04 12:46 AM                      |
| 70             | Tyrannosaurus rex and Velociraptor                                                          | 12/26/04 10:19 AM                      |
| 65             | End of Mesozoic, probably meteor or comet impact<br>Cenozoic, the "Age of Mammals"          | 12/26/04 7:52 PM                       |
| 65             | Tertiary system begins                                                                      | 12/26/04 7:52 PM                       |
| 64<br>60       | First ancestors of dogs and cats                                                            | 12/26/04 9:47 PM<br>12/27/04 5:25 AM   |
| 57             | Grasses become widespread<br>First ancestors of pigs and deer                               | 12/27/04 5:25 AM<br>12/27/04 11:09 AM  |
| 55             | First horses (Eohippus)                                                                     | 12/27/04 2:58 PM                       |
| 45             | First ancestors of rabbits                                                                  | 12/28/04 10:04 AM                      |
| 39             | First monkeys                                                                               | 12/28/04 9:31 PM                       |
| 4              | Oldest human like ancestors (hominids)                                                      | 12/31/04 5:18 PM                       |
| 2              | Quaternary system begins                                                                    | 12/31/04 8:56 PM                       |
| 1              | First of four ice ages<br>Oldest direct human-ancestor fossil, Homo habilis                 | 12/31/04 10:05 PM<br>12/31/04 11:02 PM |
| 0.1            | First modern man, Homo sapiens                                                              | 12/31/04 11:02 PM<br>12/31/04 11:48 PM |
| 0.05           | Mammoth and mastodon bones, Big Bone Lick, KY                                               | 12/31/04 11:54 PM                      |
| 228 years      | Revolutionary War                                                                           | 12/31/04 11:59 PM                      |
| 63 years       | World War II                                                                                | 1/1/05 12:00 AM                        |
|                |                                                                                             |                                        |

The scale of geologic time is vast, currently estimated at nearly 4.6 billion years. During that time, life evolved into the familiar forms we see today. These materials are provided to assist in understanding time relationships and how life on Earth changed through time.

The dates shown were compiled from several available sources. Table 1 shows some important events in Earth history, presented in the order in which they occurred. The data are also shown on the scale of a calendar year. When geologic time is compressed to the scale of a calendar year, 1 second equals about 146 years. At this scale, World War II began about 0.4 second before midnight on December 31; because of rounding, this is shown as midnight of the new year.

On the back of this sheet is a chart showing the geologic eras, systems, and series; the oldest is at the bottom. On the chart, each dot, number, or letter represents 1 million years. The dots get "older" as you read down the chart, or to the right along a row. Thus, they represent millions of years before present ("mybp") and show the ages of the oldest known fossils of selected animals or the time of an event. Not all of the items shown in Table 1 are shown on the chart because of space limitations.

For more information on the geologic time scale, see:

- www.uky.edu/KGS/education/activities.html
- Dinosaurs: Fact & Fiction pubs.usgs.gov/gip/dinosaurs/
- Fossils, Rocks, and Time: pubs.usgs.gov/gip/fossils/
- Geologic Time: pubs.usgs.gov/gip/geotime/
- Teaching About Evolution and the Nature of Science: books.nap.edu/books/0309063647/html/index.html
- Learning from the Fossil Record www.ucmp.berkeley.edu/fosrec/fosrec.html
- Understanding Evolution: evolution.berkeley.edu/
- National Center for Science Education: www.natcenscied.org/

The dot scale of geologic time is adapted from an idea by Charly Zuppann of the Indiana Geological Survey, Bloomington, Indiana.

# Lets plot the Highlights!

- Earth Forms
- Origin of life
- First multi-cell orgs
- First land animals (amphibians)
- First seed plants (ferns)
- First Reptiles
- Ordovician Extinction (438 mya)
- Devonian Extinction (365 mya)
- Permian Extinction (245mya)
- First dinosaurs
- First mammals
- First bird, Archaeopteryx

- Triassic Extinction (208 mya)
- First Flowering Plants
- □ T-Rex
- K-T Extinction (65mya)
- Ancestors of Dogs and Cats
- Grasses widespread
- □ First monkeys
- Hominids
- □ First of 4 ice ages
- Homo habilis
- Homo sapiens

Use the Calendar Chart to find the highlights listed above and plot them on the calendar provided. This will give you a good idea as to what order major events happened in Life's history and the time relationships between those events.

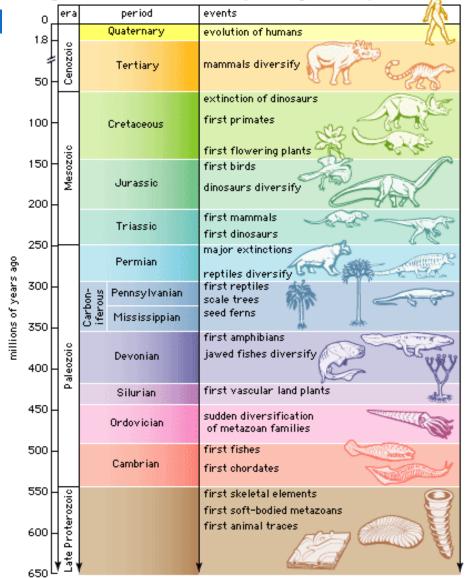
### Group Work

# Use the Calendar Chart and Dot Chart of the Geologic Time Scales to Complete the Activity in Groups.

SC.912.L.15.3: Describe how biological diversity is increased by the origin of new species and how it is decreased by the natural process of extinction.

SC.912.L.15.8: Describe the scientific explanations of the origin of life on Earth. (SC.912.E.6.3: Analyze the scientific theory of plate tectonics and identify related major

processes and features as a result of moving plates.)

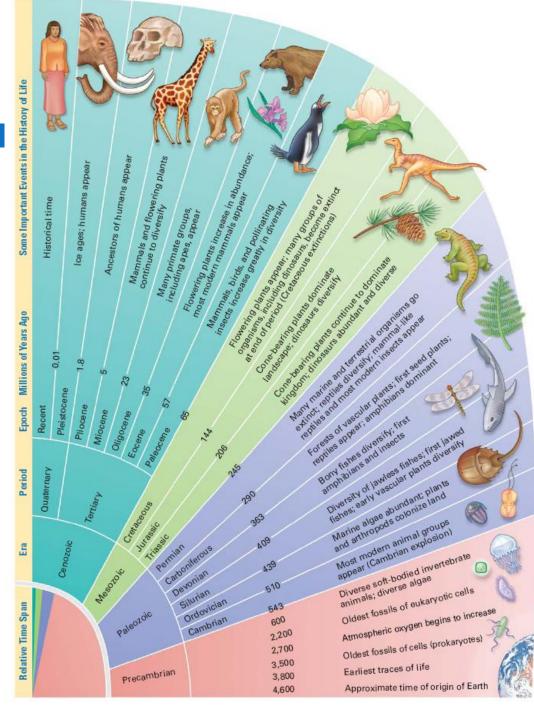

LA.910.2.2.3 The student will organize information to show understanding or relationships among facts, ideas, and events (e.g., representing key points within text through charting, mapping, paraphrasing, summarizing, comparing, contrasting, or outlining)

MACC.912.N-Q.1.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.

MACC.912.A-CED.1.1 Create equations and inequalities in one variable and use them to solve problems.

# **Geologic Time Scale**

- geologic time scale : organizes Earth's history into four distinct eras:
  - Precambrian
  - Paleozoic
  - Mesozoic
  - Cenozoic
  - eras are divided into shorter time spans called periods
  - periods are divided into epochs




Geologic time scale, 650 million years ago to the present

<sup>© 2005</sup> Encyclopædia Britannica, Inc.

### Boundaries in Time

- Boundaries between
  Eras and Periods are marked in the fossil record by:
  - Major changes (or turnovers) in the forms of life
  - 2. Widespread or mass extinctions

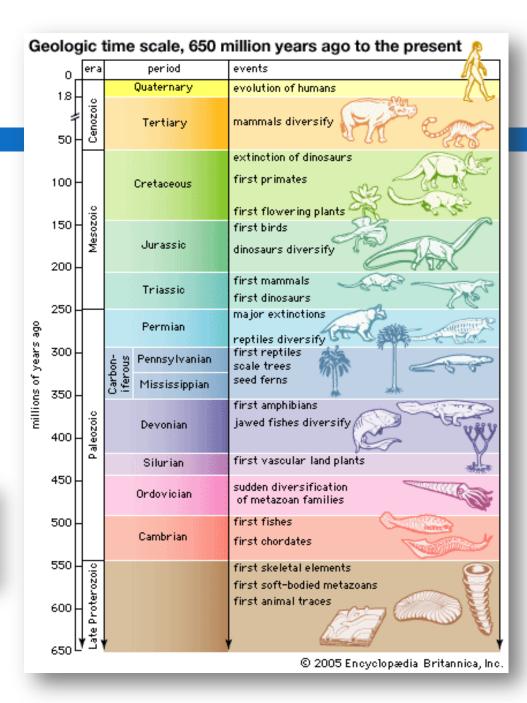


### **Mass Extinctions**

### mass extinction: episode of great species loss

#### Cretaceous-Tertiary

- 65 MYA
- world lost an enormous number of species
- dinosaurs thrived on Earth for 150 my
- <10 million years later—a brief period in geologic time—all the dinosaurs were gone




# "Big Five"

- End Ordovician
- Late Devonian
- End Permian
- End Triassic
- End Cretaceous

**Extension Opportunity** 

(SC.912.E.6.3: Analyze the scientific theory of plate tectonics and identify related major processes and features as a result of moving plates.)





#### SC.912.N.1.1, SC.912.N.1.6, SC.912.L.17.8, MA.912.S.3.2

#### **Extinctions Through Time**

The graph shows how the rate of extinction has changed over time. Study the graph, and then answer the questions.

**1.** Interpret Graphs What is plotted on the *y*-axis?

**2. Analyze Data** Which mass extinction killed off the highest percentage of genera?

**3. Draw Conclusions** Describe the overall pattern of extinction shown on the graph.

**4. Infer** What evidence is this graph probably based on?



#### **Essential Questions:**

✓ What are three scientific hypotheses about how and where life began on earth?



SC.912.L.15.8: Describe the scientific explanations of the origin of life on Earth.

#### Prokaryotic life begins life on Earth.



Enduring Understanding: The scientific theory of evolution is supported by multiple forms of scientific evidence and organisms are classified based on their evolutionary history.

# Origin of Life on Earth

#### 1. Earth forms (Big Bang)

SC.912.E.5.1 Cite evidence used to develop and verify the scientific theory of the Big Bang (also known as the Big Bang Theory) of the origin of the universe.

#### 2. Reducing Atmosphere

**SC.912.P.8.10** Describe oxidation-reduction reactions in living and non-living systems

#### 3. Formation of Organic Molecules

SC.912.L.18.1: Describe the basic molecular structures and primary functions of the four major categories of biological macromolecules.

#### 4. Formation of Complex Polymers

SC.912.L.18.1-4: Describe the basic molecular structures and primary functions of the four major categories of biological macromolecules.

#### 5. Origin of Cells (Life)

**SC.912.L.14.5:** Explain the evidence supporting the scientific theory of the origin of eukaryotic cells (endosymbiosis).

# HISTORY OF THE UNIVERSE



### 12 – 15 billion years ago

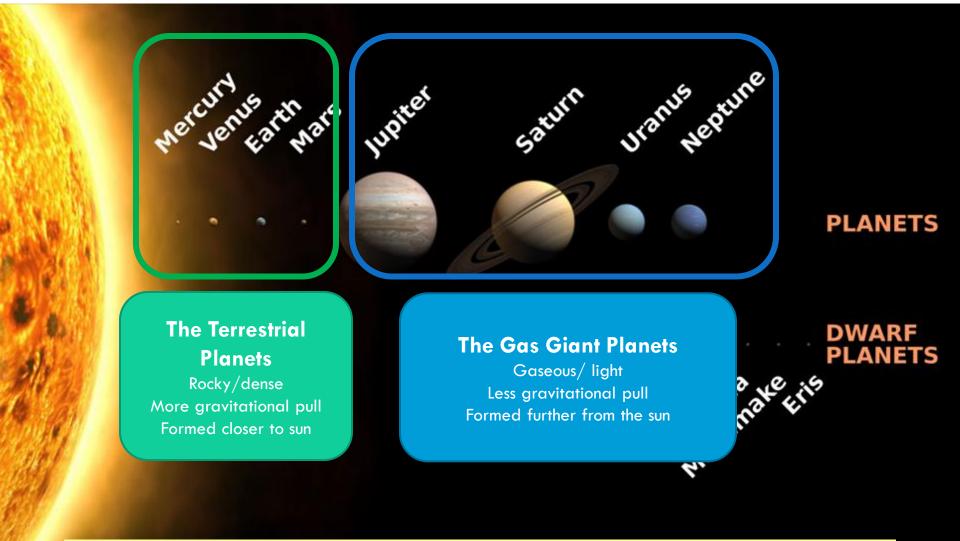
- "Time zero"
- Everything compressed into volume of sun
  - Incredibly dense, incredibly hot
- Big bang
  - Origin of the Universe
  - Matter and energy very rapidly distributed throughout universe



SC.912.E.5.1 Cite evidence used to develop and verify the scientific theory of the Big Bang (also known as the Big Bang Theory) of the origin of the universe.

# EARTH FORMS

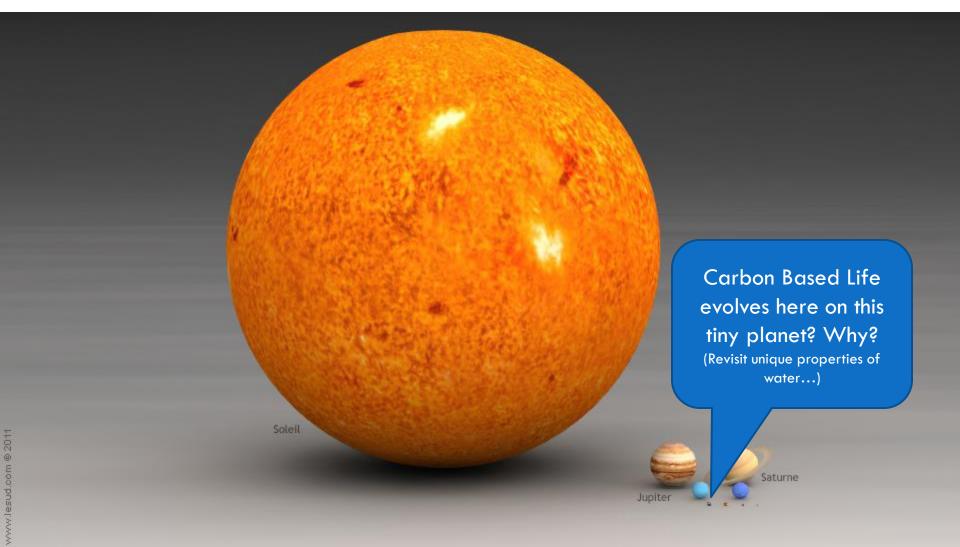
# Could life exist here on this brand new Earth?


- Contracting cloud formed our solar system
  - H<sub>2</sub>, H<sub>2</sub>O, Fe, Silicates, HCN, NH<sub>3</sub>, CH<sub>4</sub>, H<sub>2</sub>CO
  - Planets formed ~ 4.6 4.5 billion years ago
- Earth was hot
  - Asteroid impacts, internal compression, radioactive decay of minerals
  - Much of rocky interior melted
  - Many heavier elements moved toward interior
  - Lighter elements floated toward surface

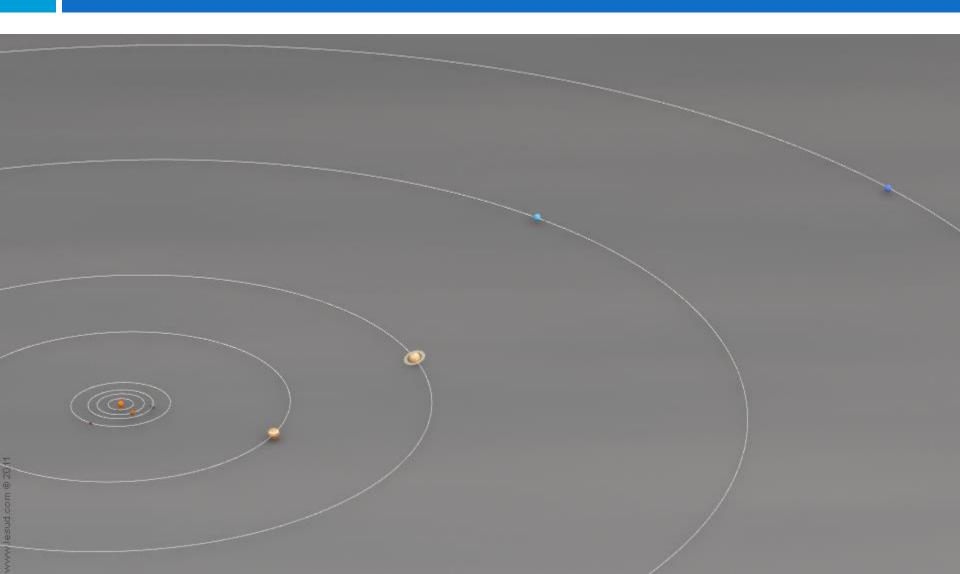




SC.912.E.5.2 Identify patterns in the organization and distribution of matter in the universe and the forces that determine them.


### Formation of Our Solar System




SC.912.E.5.5 Explain the formation of planetary systems based on our knowledge of our Solar System and apply this knowledge to newly discovered planetary systems

### Planet Size Comparisons

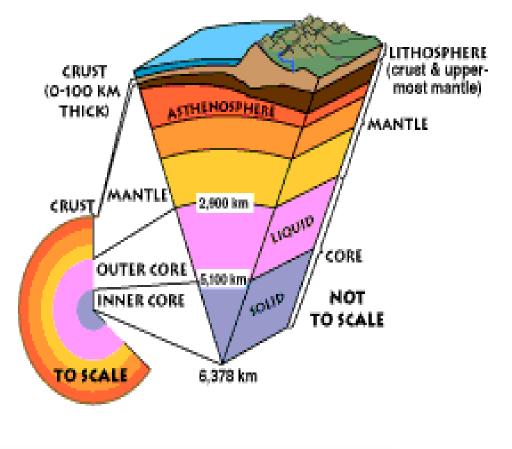




# **Orbit Distance Comparisions**



### EARTH


Think Pair Share: In which layer do you think life originated on our planet? Why? Defend your answer!

### Crust

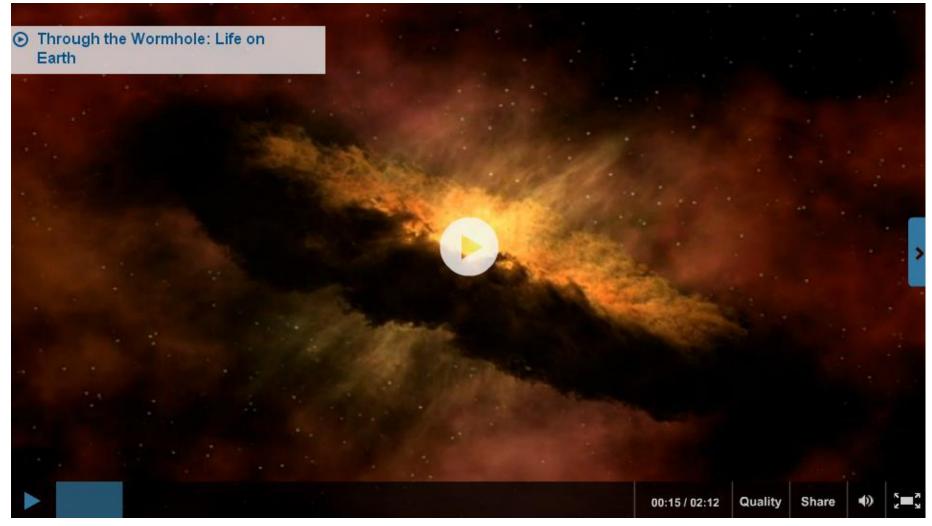
- Surface zone
- Basalt, granite, and other low-density rocks

### Mantle

- Interior to crust
- Intermediate-density rocks
- Core
  - High-density, partially molten nickel and iron



SC.912.E.6.1 Describe and differentiate the layers of Earth and the interactions among them.


## EARTH TO LIFE

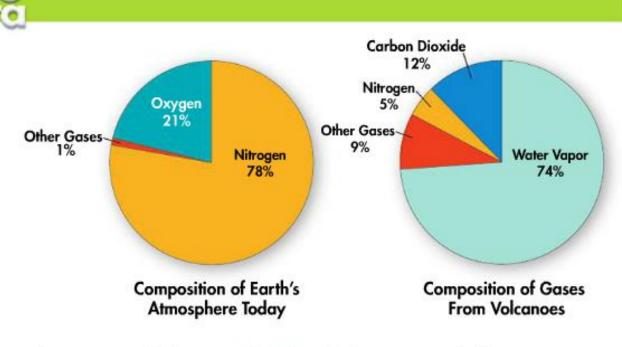
- Earth 4 billion years ago
  - Thin-crusted inferno
- Earth ~3.8 billion years ago
  - Life arose, but how did this happen?



**PHOTORESEARCHERS** 






# EARLY REDUCING ATMOSPHERE

#### Comparing Atmospheres

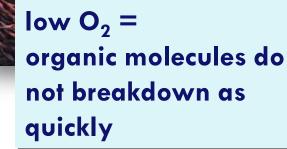
Many scientists think that Earth's early atmosphere may have been similar to the gases released by a volcano today. The graphs show the composition of the atmosphere today and the composition of gases released by a volcano.

nalyz

**1. Interpret Grophs** Which gas is most abundant in Earth's atmosphere today? What percentage of that gas may have been present in the early atmosphere?



**2.** Interpret Graphs Which gas was probably most abundant in the early atmosphere?


**3.** Infer Where did the water in today's oceans probably come from?

# EARLY REDUCING ATMOSPHERE

- Earth's early atmosphere had a composition very different than today's atmosphere
  - No free O<sub>2</sub>
  - More reducing than present atmosphere
  - Inorganic Compounds H<sub>2</sub>O, H<sub>2</sub>, CH<sub>4</sub>, NH<sub>3</sub>
- Energy Sources
  - \*lightning, UV radiation, volcanic
- Can we recreate this environment?



**PHOTORESEARCHERS** 

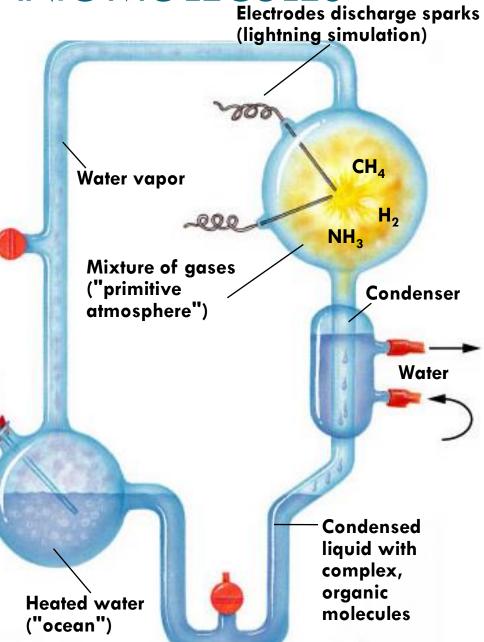




### FORMATION OF ORGANIC MOLECULES

### Abiogenesis

#### 1920 Oparin & Haldane


propose reducing atmosphere hypothesis

#### 1953 Miller & Urey

test hypothesis

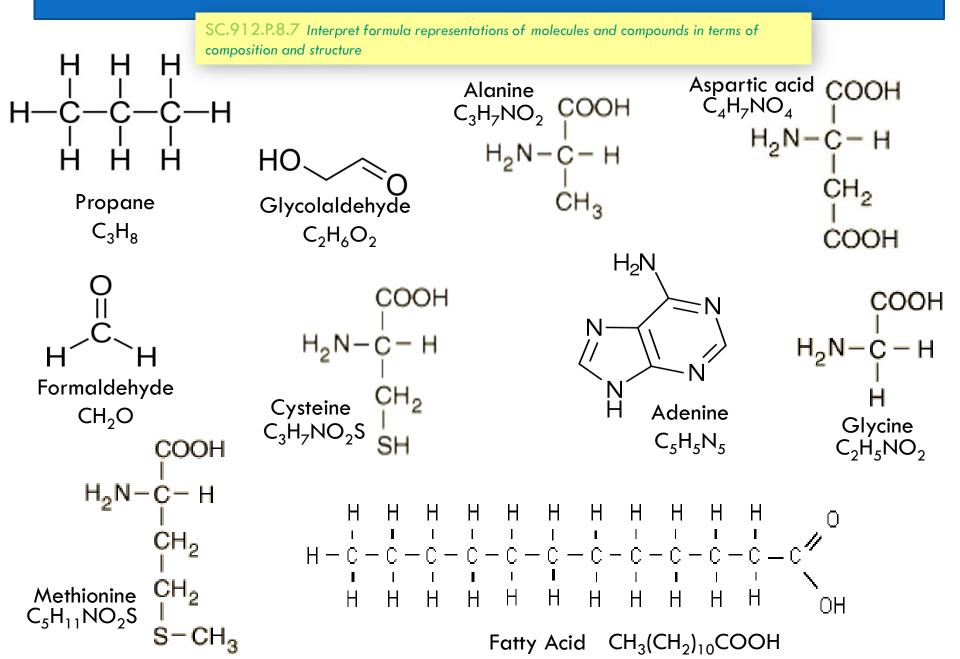
#### Miller Urey Experiment

- recreated early atmosphere
  - Inorganic compounds (H<sub>2</sub>O, H<sub>2</sub>, CH<sub>4</sub>, NH<sub>3)</sub>
  - No free O<sub>2</sub>
  - Energy sources- heat and electrical sparks
    - Mimic geothermal heat and lightning
  - Made organic compounds
    - \*amino acids
    - \*adenine





### **Stanley Miller**


#### **University of Chicago**

#### Produced:

- •All 20 amino acids
- •Several sugars
- •Lipids
- •Purines and pyrimidines
- •ATP (when phosphate was added)

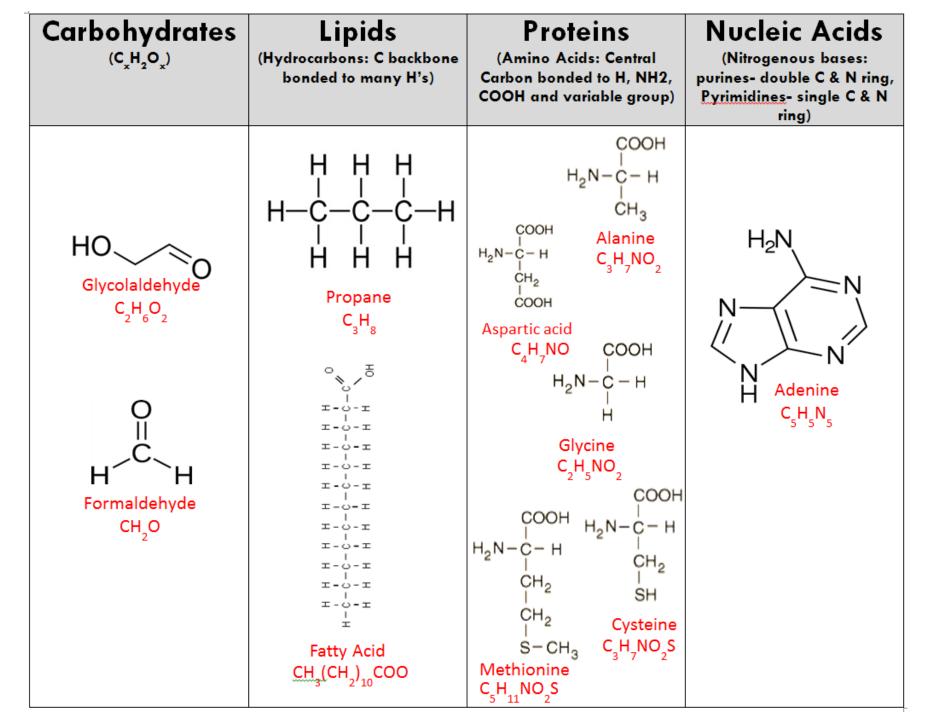


#### Biomolecules (or Precursors) Produced by Abiogenesis Experiments

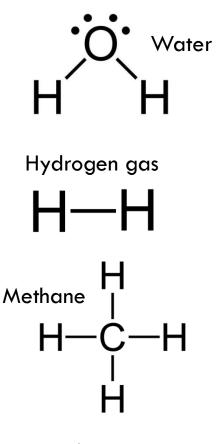


#### Glycolaldehyde

 $C_2H_6O_2$ 


SC.912.P.8.7 Interpret formula representations of molecules and compounds in terms of composition and structure SC.912.P.8.12 Describe the properties of the carbon atom that make the diversity of carbon compounds possible.

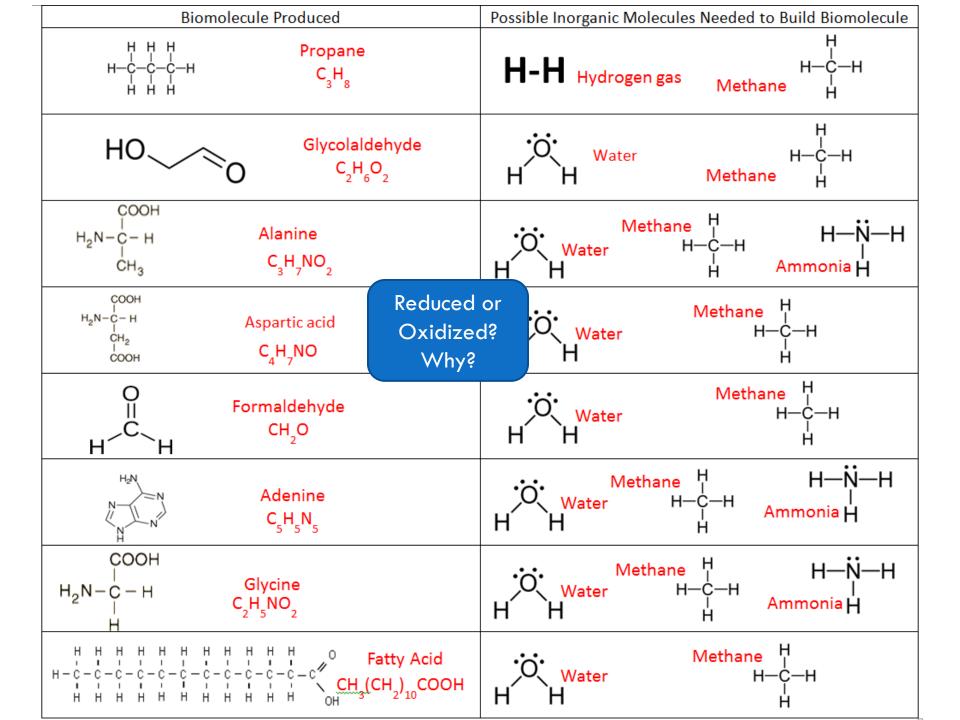
HO


| 1<br>1IA<br>11A                        | 1A Periodic Table of the Elements |                                  |                                            |                                         |                                  |                                       |                                 |                                        |                                    |                                         | 18<br>VIIIA<br>8A                 |                                    |                                    |                                    |                                   |                                      |                                     |
|----------------------------------------|-----------------------------------|----------------------------------|--------------------------------------------|-----------------------------------------|----------------------------------|---------------------------------------|---------------------------------|----------------------------------------|------------------------------------|-----------------------------------------|-----------------------------------|------------------------------------|------------------------------------|------------------------------------|-----------------------------------|--------------------------------------|-------------------------------------|
| 1<br>H<br>Hydrogen<br>1.0079           | 2<br>IIA<br>2A                    |                                  |                                            |                                         |                                  |                                       |                                 |                                        |                                    |                                         |                                   | 13<br>IIIA<br>3A                   | 14<br>IVA<br>4A                    | 15<br>VA<br>5A                     | 16<br>VIA<br>6A                   | 17<br>VIIA<br>7A                     | 2<br>He<br>Helium<br>4.00260        |
| 3<br>Lithium<br>6.941                  | 4<br>Be<br>Beryllium<br>9.01218   |                                  |                                            |                                         |                                  |                                       |                                 |                                        |                                    |                                         |                                   | 5<br>B<br>Boron<br>10.811          | 6<br>C<br>Carbon<br>12.011         | 7<br>N<br>Nitrogen<br>14.00674     | 8<br>O<br>0xygen<br>15.9994       | 9<br>F<br>Fluorine<br>18.998403      | 10<br>Ne<br>20.1797                 |
| 11<br>Na<br>Sodium<br>22,989768        | 12<br>Mg<br>Magnesium<br>24.305   | 3<br>IIIB<br>3B                  | 4<br>IVB<br>4B                             | 5<br>VB<br>5B                           | 6<br>VIB<br>6B                   | 7<br>VIIB<br>7B                       | 8                               | 9<br>                                  | 10                                 | 11<br>IB<br>1B                          | 12<br>IIB<br>2B                   | 13<br>Al<br>Aluminum<br>26.981539  | Silicon<br>28.0855                 | 15<br>P<br>Phosphorus<br>30.973762 | 16<br>S<br>Sulfur<br>32.066       | 17<br>Cl<br>Chlorine<br>35.4527      | 18<br>Argon<br>39.948               |
| 19<br>K<br>Potassium<br>39.0983        | 20<br>Ca<br>Calcium<br>40.078     | 21<br>Sc<br>Scandium<br>44.95591 | 22<br>Ti<br>Titanium<br>47.88              | 23<br>V<br>Vanadium<br>50.9415          | 24<br>Cr<br>Chromium<br>51.9961  | 25<br>Mn<br>Manganese<br>54.938       | 26<br>Fe<br>Iron<br>55.847      | 27<br>Co<br>Cobalt<br>58.9332          | 28<br>Ni<br>Nickel<br>58.6934      | 29<br>Cu<br><sup>Copper</sup><br>63.546 | 30<br>Zn<br>Zinc<br>65.39         | 31<br>Gallium<br>69.732            | 32<br>Germanium<br>72.64           | 33<br>As<br>Arsenic<br>74,92159    | 34<br>Se<br>Selenium<br>78.96     | 35<br>Br<br>Bromine<br>79.904        | 36<br>Kr<br>Krypton<br>83.80        |
| 37<br><b>Rb</b><br>Bubidium<br>85.4678 | 38<br>Sr<br>Strontium<br>87.62    | 39<br>Y<br>Yttrium<br>88.90585   | 40<br>Zr<br><sup>Zirconium</sup><br>91.224 | 41<br>Nb<br>Niobium<br>92.90638         | 42<br>Mo<br>Molybdenum<br>95.94  | 43<br>TC<br>Technetium<br>98.9072     | 44<br>Ru<br>Ruthenium<br>101.07 | 45<br><b>Rh</b><br>Rhodium<br>102.9055 | 46<br>Pd<br>Palladium<br>106.42    | 47<br>Ag<br>Silver<br>107.8682          | 48<br>Cd<br>Cadmium<br>112.411    | 49<br>In<br>Indium<br>114.818      | 50<br>Sn<br>Tin<br>118.71          | 51<br>Sb<br>Antimony<br>121.760    | 52<br>Te<br>Tellurium<br>127.6    | 53<br>Iodine<br>126.90447            | 54<br>Xe<br>Xenon<br>131.29         |
| 55<br><b>Cs</b><br>132.90543           | 56<br>Ba<br>Barium<br>137.327     | 57-71                            | 72<br>Hf<br>Hafnium<br>178.49              | 73<br><b>Ta</b><br>Tantalum<br>180.9479 | 74<br>W<br>Tungsten<br>183.85    | 75<br><b>Re</b><br>Rhenium<br>186.207 | 76<br>Os<br>Osmium<br>190.23    | 77<br>Ir<br>Iridium<br>192.22          | 78<br>Pt<br>Platinum<br>195.08     | 79<br>Au<br>Gold<br>196.9665            | 80<br>Hg<br>Mercury<br>200.59     | 81<br>TI<br>Thallium<br>204.3833   | 82<br>Pb<br>Lead<br>207.2          | 83<br>Bi<br>Bismuth<br>208.98037   | 84<br>Polonium<br>[208.9824]      | 85<br>At<br>Astatine<br>209.9871     | 86<br>Rn<br>Radon<br>222.0176       |
| 87<br>Fr<br>Francium<br>223.0197       | 88<br>Ra<br>Radium<br>226.0254    | 89-103                           | 104<br><b>Rf</b><br>Rutherfordium<br>[261] | 105<br>Db<br>Dubnium<br>[262]           | 106<br>Sg<br>Seaborgium<br>[266] | 107<br>Bh<br>Bohrium<br>[264]         | 108<br>Hs<br>Hassium<br>[269]   | 109<br>Mt<br>Meitnerium<br>[268]       | 110<br>Ds<br>Darmstadtium<br>[269] | 111<br>Rg<br>Roentgenium<br>[272]       | 112<br>Cn<br>Copernicium<br>[277] | 113<br>Uut<br>Ununtrium<br>unknown | 114<br>Uuq<br>Ununquadium<br>[289] | 115<br>Ununpentium<br>unknown      | 116<br>Uuh<br>Ununhexium<br>[298] | 117<br>Uus<br>Ununseptium<br>unknown | 118<br>Uuo<br>Ununoctium<br>unknown |
|                                        | nthanide<br>Series                | 57<br>La<br>Lanthanu<br>138,905  | um Cerium                                  | Praseodyn                               | nium Neodymi                     | um Promethi                           | um Samariu                      | um Europiu                             | m Gadolini                         | um Terbiur                              | n Dysprosiu                       | ım Holmiu                          | m Erbiun                           | n Thuliur                          | n Ytterbiu                        | m Lutetiu                            | m                                   |
|                                        | Actinide<br>Series                | 89<br>Actiniu<br>227.027         | 90<br>The                                  | 91<br>Protectin                         | 92<br>U<br>Uraniur               | 93<br>Neptunit                        | 94<br>Putoniu                   | 95<br>America                          | n 96<br>Cn                         | 97<br>Berkellu                          | 98<br>Cf                          | 99<br>Es                           |                                    | 101<br>Mendeley                    | 102<br>NC                         | 103<br>Lawrenc                       |                                     |
|                                        |                                   |                                  | Alkali<br>Metal                            | Alkaline<br>Earth                       | Transi<br>Met                    | tion E<br>al N                        | iasic S<br>Netal S              | emimetals                              | Nonmetals                          | Halogens                                | s Nobl<br>Gas                     |                                    | hanides ,                          | Actinides                          |                                   |                                      |                                     |

Examine the molecules produced in the Abiogenesis experiments. Categorize their importance to life into the chart below based on the structure of each. \*Hints have been inserted into each column to help you.

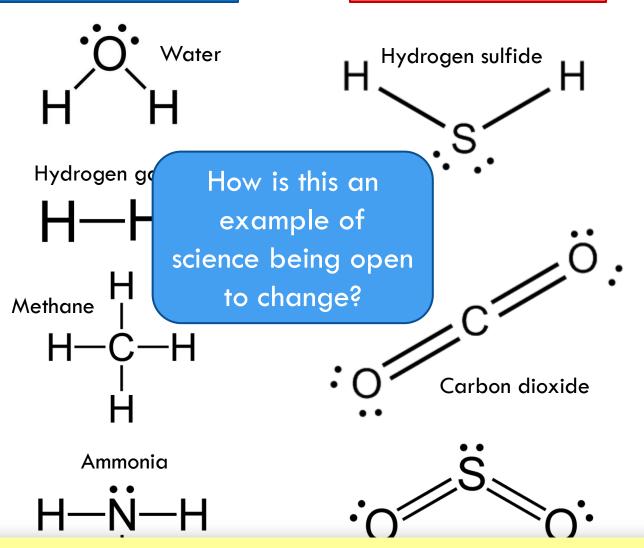
| Carbohydrates<br>(C <sub>x</sub> H <sub>2</sub> O <sub>x</sub> ) | <b>Lipids</b><br>(Hydrocarbons: C<br>backbone bonded to<br>many H's) | <b>Proteins</b><br>(Amino Acids: Central<br>Carbon bonded to H,<br>NH2, COOH and variable<br>group) | Nucleic Acids<br>(nitrogenous bases:<br>purines- double C & N<br>ring, Pyrimidines- single<br>C & N ring) |
|------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                                                                  |                                                                      |                                                                                                     |                                                                                                           |
|                                                                  |                                                                      |                                                                                                     |                                                                                                           |
|                                                                  |                                                                      |                                                                                                     |                                                                                                           |




#### Classic Urey-Miller



Ammonia




Examine the chart **"Biomolecules Produced** by Abiogenesis **Experiments**" and determine for each molecule listed which molecules in Miller's laboratory atmosphere would have come together to create these biomolecules.



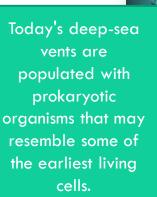
#### Classic Urey-Miller

#### Volcanic Eruptions



Examine the molecules left on the "Biomolecules Produced by Abiogenesis Experiments" chart and determine if the molecules available in this revised atmosphere could have played a part in their formation. Complete the chart for these molecules as before.

SC.912.N.2.4 Explain that scientific knowledge is both durable and robust and open to change. Scientific knowledge can change because it is often examined and re-examined by new investigations and scientific argumentation. Because of these frequent examinations, scientific knowledge becomes stronger, leading to its durability.


| Biomo                                                                                                    | lecule Produced                                                | Possible Inorganic Molecules Needed to Build Biomolecule |                            |                                   |  |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------|-----------------------------------|--|--|
| H <sub>2</sub> N-C-H<br>CH <sup>2</sup> SH<br>SH                                                         | Cysteine<br>C <sub>3</sub> H <sub>7</sub> NO <sub>2</sub> S    | Sulfur dioxide                                           | Methane H<br>H—C—H<br>H An | H—Ň—H<br>I<br>mmonia H            |  |  |
| H <sub>2</sub> N-COOH<br>H <sub>2</sub> N-C-H<br>CH <sub>2</sub><br>CH <sub>2</sub><br>S-CH <sub>3</sub> | Methionine<br>C <sub>5</sub> H <sub>11</sub> NO <sub>2</sub> S | Sulfur dioxide                                           | Methane H<br>H—C—H<br>H    | H— <mark>Ň</mark> —H<br>Ammonia H |  |  |

#### Recreating the Early Atmosphere



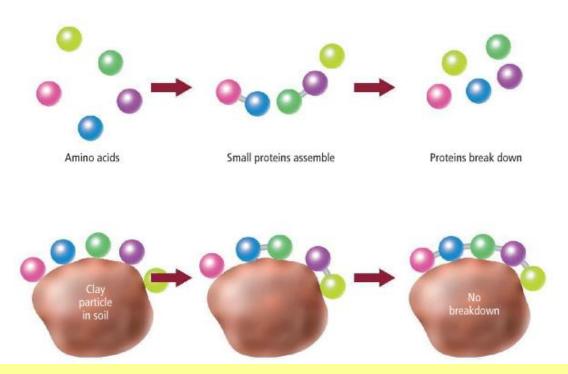
### SITES OF ABIOGENESIS

- Where would these key molecules have been created on early earth?
  - Shallow water or moist sediments such as clay
  - Mineral-rich deep sea vents/underwater volcanoes








SC.912.L.15.8: Describe the scientific explanations of the origin of life on Earth.

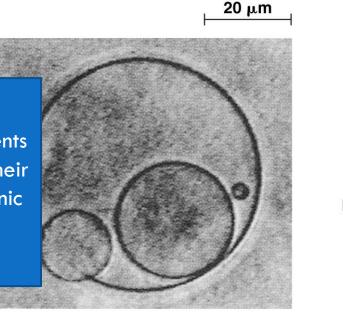
### Hydrothermal Vents

Today's deep-sea vents are populated with prokaryotic organisms that may resemble some of the earliest living cells.

### FORMATION OF COMPLEX POLYMERS

- Once these small organic molecules accumulated, polymers began to form.
  - Chemical attractions




For example: Proteins are polymers of amino acids, they may have been brought together by clay particles common in sediments of early oceans

SC.912.L.18.1-4: Describe the basic molecular structures and primary functions of the four major categories of biological macromolecules.

# Origin of Cells: Protobionts

- Fatty Bubbles
- Clusters of abiotically produced molecules that came before living cells
- separate inside from outside
- capable of simple metabolism & reproduction

(a) Simple reproduction



Glucose-phosphate **Glucose-phosphate** Phosphorylase Starch Amylase Phosphate Maltose Maltose (b) Simple metabolism

Laboratory experiments have demonstrated their formation from organic compounds

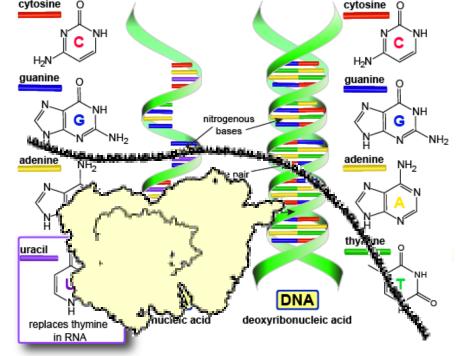
Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.










SC.912.L.15.8: Describe the scientific explanations of the origin of life on Earth. MA.912.S.1.2 Determine appropriate and consistent standards of measurement for the data to be collected in a survey or experiment.

### **Dawn of Natural Selection**

# **Origin of Genetics**

### RNA is likely first genetic material

- Simpler than DNA
- multi-functional
- Some RNA behave like enzymes
- codes information
  - self-replicating molecule
  - makes inheritance possible
    - Codes for proteins
  - natural selection & evolution selection
- RNA sequences have changed little over time



SC.912.L.18.1: Describe the basic molecular structures and primary functions of the four major categories of biological macromolecules. SC.912.L.16.5: Explain the basic processes of transcription and translation, and how they result in the expression of genes.

Messen

cytosine



 Through the Wormhole: From RNA to DNA



>

### Panspermia

- Proposes that life that can survive the effects of space
  - extremophile bacteria
  - trapped in debris that is ejected into space after collisions between planets that harbor life
  - Bacteria may travel dormant for an extended amount of time before colliding randomly with other planets
  - If met with ideal conditions on a new planet's surfaces, the bacteria become active and the process of evolution begins.
- NOT meant to address how life began, just the method that may cause its sustenance.

Group Activity: In Groups, evaluate the strengths and weaknesses of the Abiogenesis and Panspermia Hypotheses with regards to the Origin of Life.

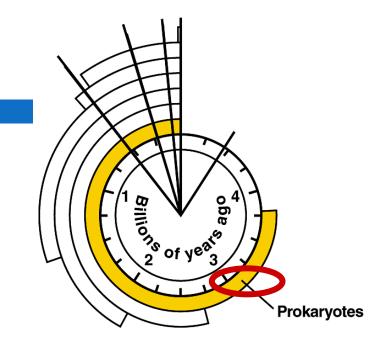


SC.912.L.15.8: Describe the scientific explanations of the origin of life on Earth.

LA.910.2.2.3: The student will organize information to show understanding or relationships among facts, ideas, and events (e.g., representing key points within text through charting, mapping, paraphrasing, summarizing, comparing, contrasting, or outlining) Ok, so we now have an idea of how life came to be on our planet but what happens next?

# Key Events in Origin of Life

 Key events in evolutionary history of life on Earth
 life originated 3.5– 4.0 bya




### First Living Cells

Prokaryotes dominated life on Earth from 3.5–2.0 bya

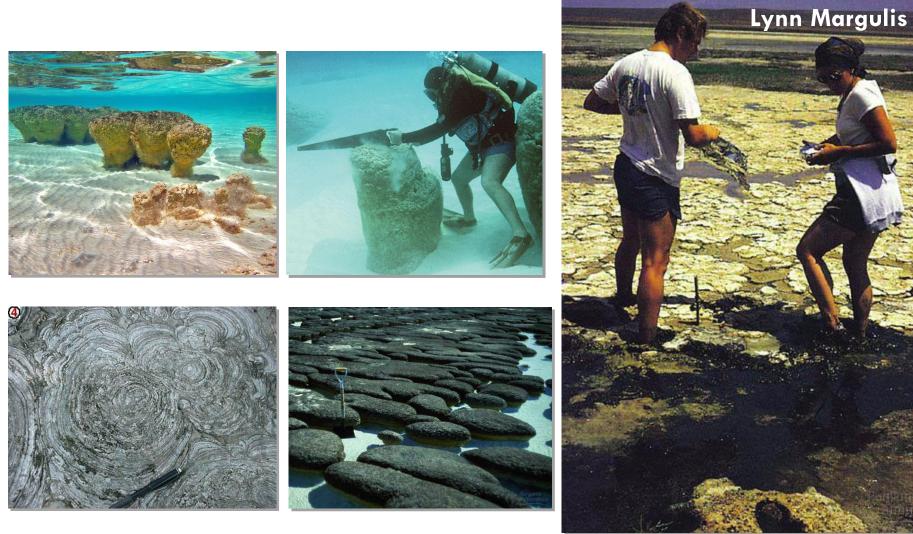
# 3.5 billion year old fossil of bacteria





modern bacteria



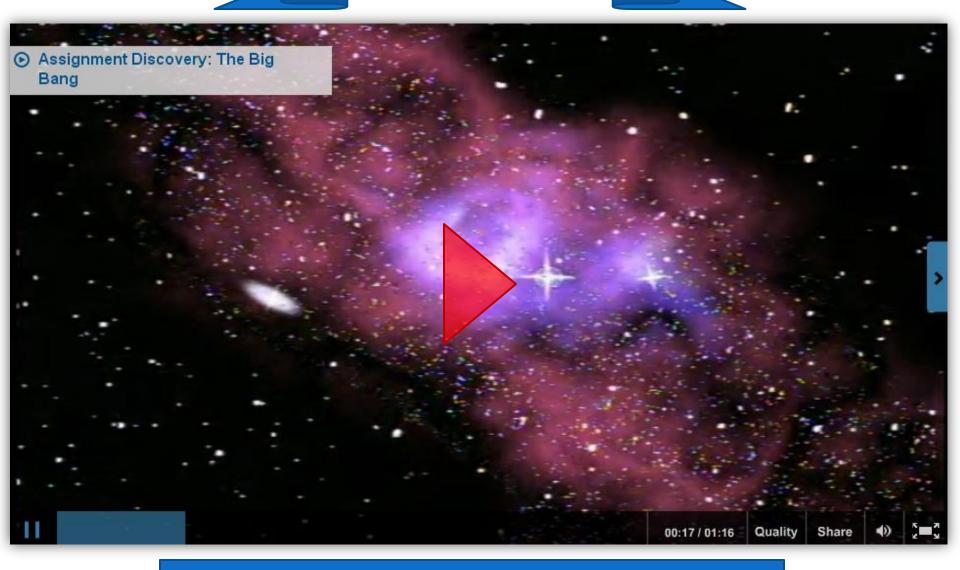

### **Stromatolites**

- provide the most ancient records of life on Earth by fossil remains which date from more than 3.5 billion years ago
- composed of thin layers of sediment pressed tightly together that has trapped clumps of microorganisms (cyanobacteria)





### **Stromatolites**

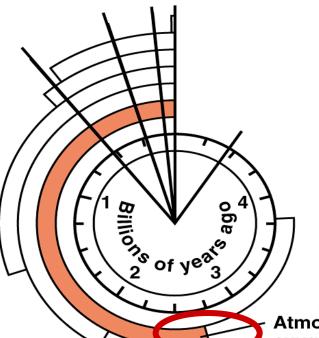



### Modern vs. Fossil Stromatolite

Resembles layered mats formed by colonies of photosynthetic prokaryotes living today in salty marshes



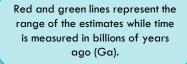


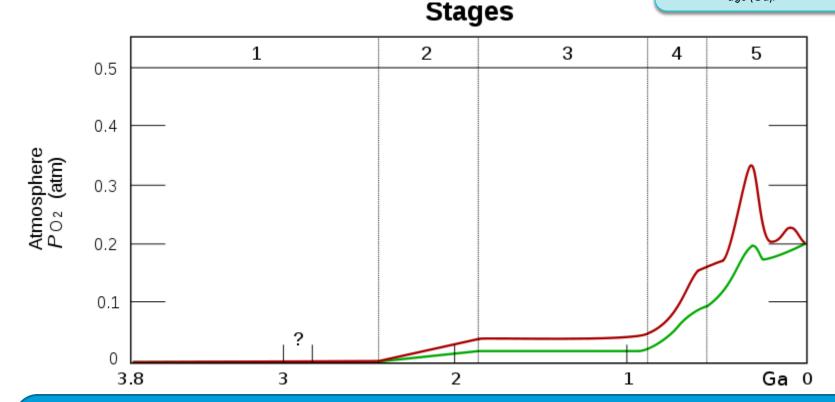



Scroll down on playlist to "Assignment Discovery: The Big Bang"

### Oxygen atmosphere

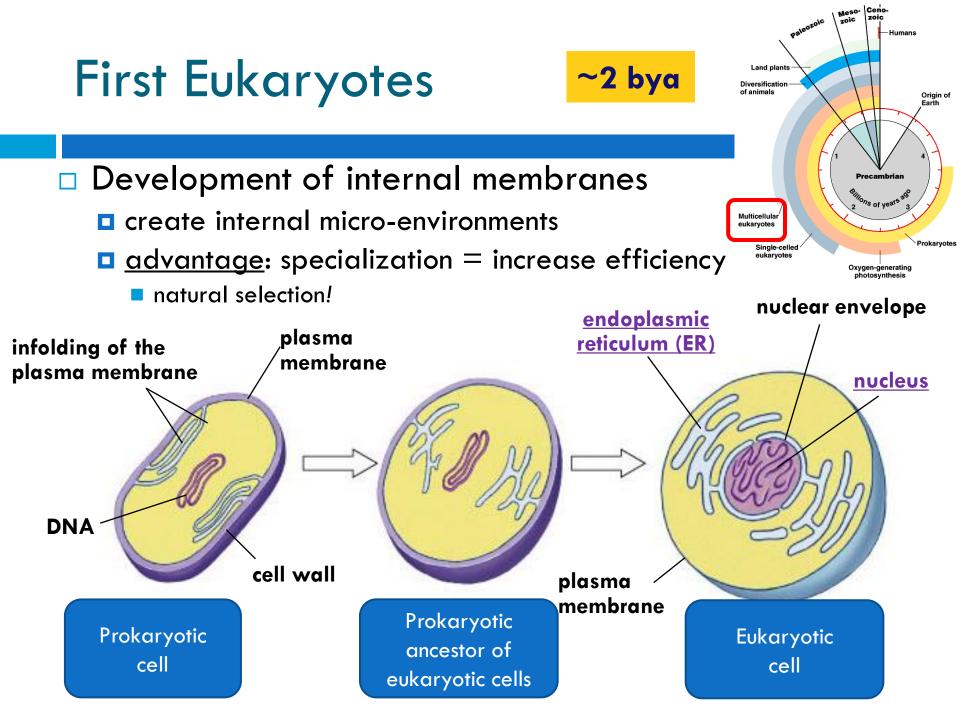


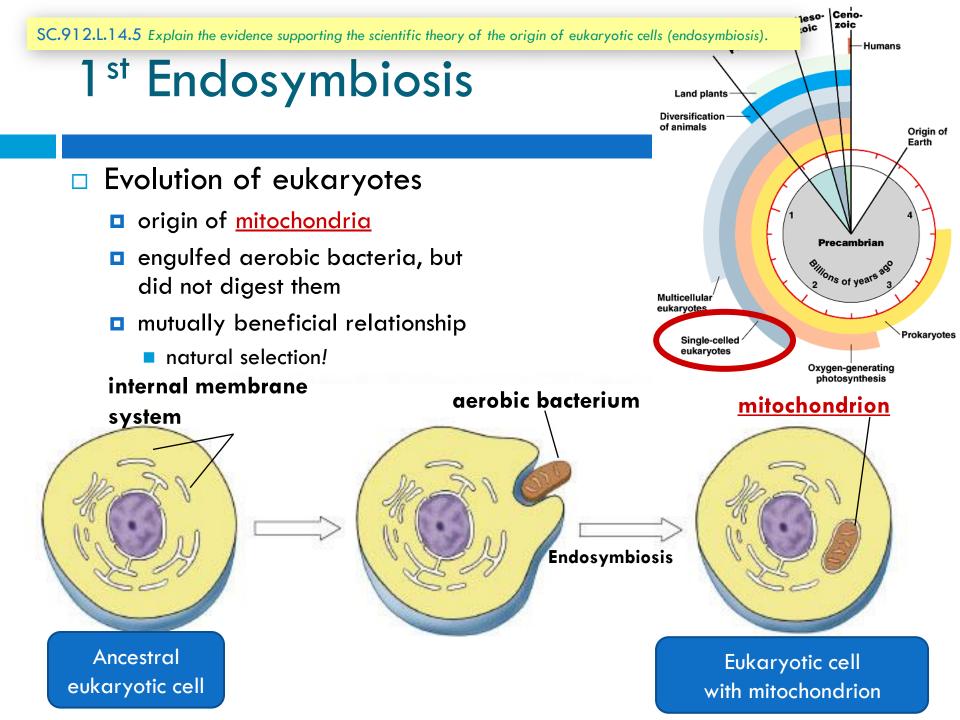

□ Oxygen begins to accumulate 2.7 bya
 □ reducing → <u>oxidizing</u> atmosphere
 ■ evidence in banded iron in rocks = rusting
 ■ makes aerobic respiration possible
 □ photosynthetic bacteria (blue-green algae)






Atmos SC.912.P.8.10 Describe oxidation-reduction reactions in living and non-living systems oxygen


### Estimated Evolution of Atmospheric Oxygen






1. Analyze and interpret what is occurring in Stages 1 and 2 in the graph.

2. Analyze and interpret the trends occurring in Stages 2 and 5 in the graph.





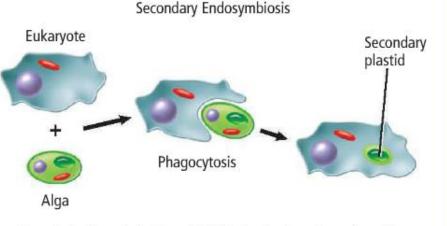
SC.912.L.15.8: Describe the scientific explanations of the origin of life on Earth.

#### Based on Real Data\* Analyze Scientific Illustrations

#### How did plastids evolve?

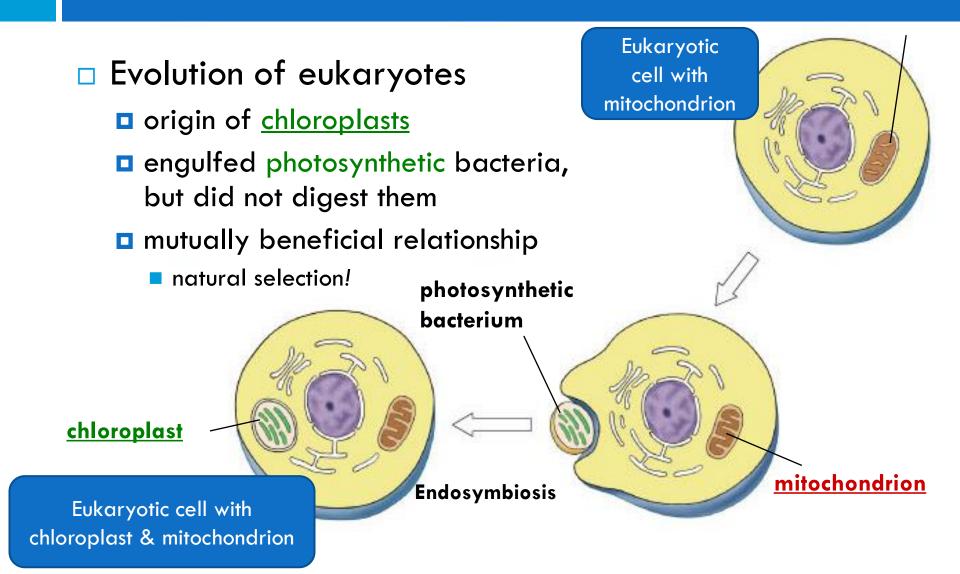
Chloroplasts belong to a group of organelles called plastids, which are found in plants and algae. Chloroplasts perform photosynthesis. Other plastids store starch and make substances needed as cellular building blocks or for plant function.

DATA ANALYSIS LAB


#### **Think Critically**

- 1. Summarize the process described in the diagram. Include the definition of phagocytosis in your description.
- Compare secondary endosymbiosis to the endosymbiont theory described in Figure 17.

#### **Data and Observations**


The illustration shows a way these plastids might have evolved.

#### **Plastid origin**

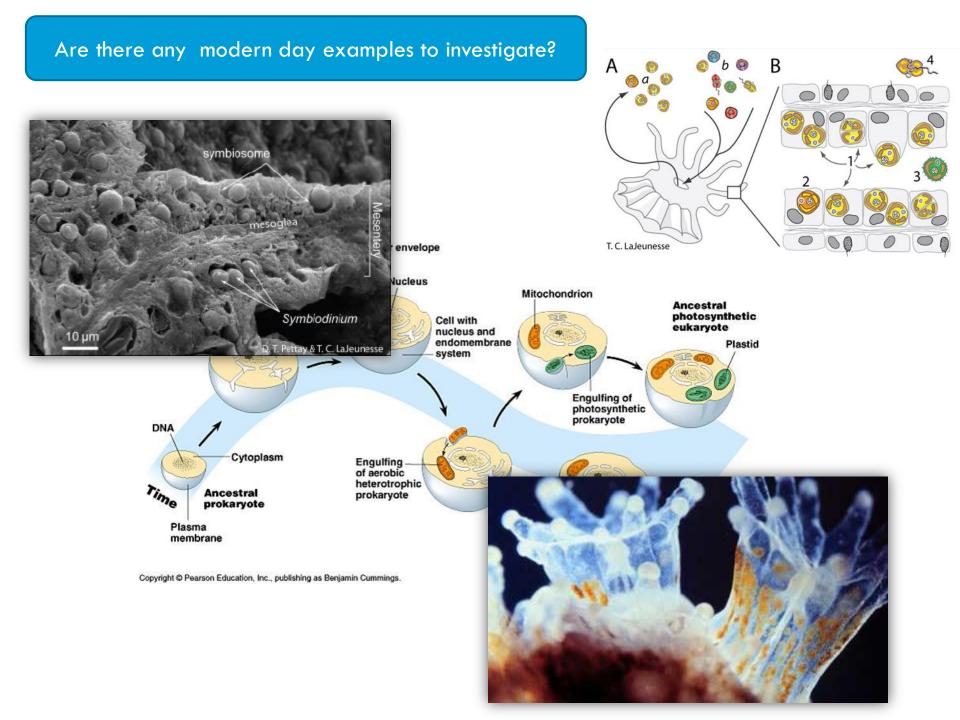


\*Data obtained from: Dyall, S.D., et al. 2004. Ancient invasions: from endosymbionts to organelles. Science 304: 253–257.

# 2<sup>nd</sup> Endosymbiosis



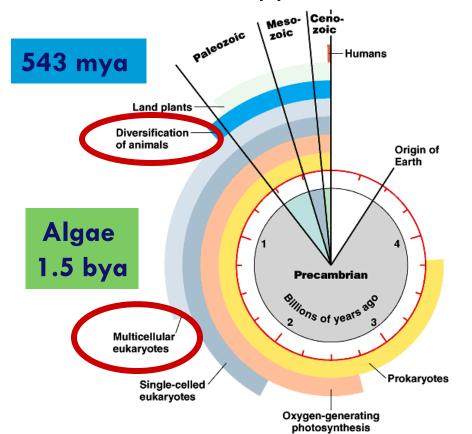
# **Theory** of Endosymbiosis

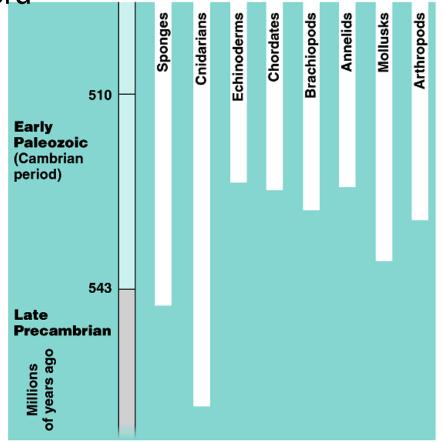

### Evidence

- structural
  - mitochondria & chloroplasts resemble bacterial structure
- genetic
  - mitochondria & chloroplasts have their own circular DNA, like bacteria
- functional
  - mitochondria & chloroplasts move freely within the cell
  - mitochondria & chloroplasts reproduce independently from the cell



Lynn Margulis




### **Diversification of Life**

Cambrian explosion- diversification of animals

within 10–20 million years most of the major phyla of animals appear in fossil record





### Origin of Invertebrates

- Fossils that shed light of the origins of invertebrates have been found in 3 places:
  - Edicara Hills, Australia
  - Chengjiang, China
  - Burgess Shale, Canadian Rockies



SC.912.L.15.1Explain how the scientific theory of evolution is supported by the fossil record, comparative anatomy, comparative embryology, biogeography, molecular biology, and observed evolutionary change.

### Origin of Invertebrates







# Origin of Invertebrates

### Cambiran Explosion

- Animals evolved
  - complex body plans
  - shells, skeletons, and other hard parts were evolving
  - Specialized cells, tissues, and organs
- Animal Diversity
  - "exploded"
  - Ancestors to modern organisms were appearing



SC.912.L.15.3: Describe how biological diversity is increased by the origin of new species and how it is decreased by the natural process of extinction.