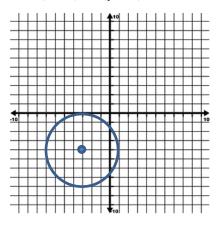
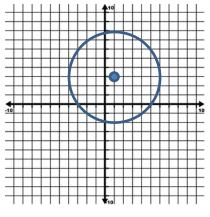

Analyzing Equation of Circle

1. Compare and contrast the equations for lines, parabolas, and circles. (Identify similarities and differences.)


Lines	Parabolas	Circles
y = 2x - 7	$y = 3x^2 + 5x - 9$	$(x-2)^2 + (y+1)^2 = 9$
$y = \frac{1}{2}x + 5$	$y = -x^2 + 5$	$(x+3)^2 + (y+4)^2 = 16$
y-8=6(x+4)	$y = \left(x - 2\right)^2 + 4$	$(x-1)^2 + (y-3)^2 = 25$
3x + 4y = 12	$y+2=16(x+1)^2$	$x^2 + (y+7)^2 = 49$
9x - 2y = 15	$y = -2x^2 + 5x$	$x^2 + y^2 = 8$

2. Identify the center and radius of the circles graphed below.


A.
$$(x-2)^2 + (y+1)^2 = 9$$

B.
$$(x+3)^2 + (y+4)^2 = 16$$

C.
$$(x-1)^2 + (y-3)^2 = 25$$

Center: _____

Center: _____

Center: _____

Radius: _____

Radius:

Radius:

^{*} Answer the questions on the following page and post to share with your peers.

3. Analyze the equations and graphs in question #2. Form a hypothesis stating how the center and radius of a circle can be found when given an equation.

4. Test your hypothesis by identifying the center and radius of the circles with the given equations:

A.
$$(x+5)^2 + (y-1)^2 = 4$$

A.
$$(x+5)^2 + (y-1)^2 = 4$$
 B. $(x-5)^2 + (y-7)^2 = 36$ C. $x^2 + (y+7)^2 = 49$

Center: ____ Center: ____ Center: ____

Radius: _____ Radius: ____ Radius: ____